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Abstract

Conventionally, transactions of goods over the internet is performed by the
use of a trusted intermediary that holds the payment in escrow and settles
disputes. They are assumed to behave honestly because of reputation effects;
if they misbehave, its users will move to another market. This effect underlies
the success of various commerce platforms that have seen a surge in profits
over the past decades. However, these systems inherently constitute a privacy
risk, in addition to other problems resulting from their market dominance.

In this thesis, we propose a system for fully decentralized commerce in-
volving rational agents that interact using a blockchain. At its core, the
system consists of an escrow mechanism that enables both the buyer and the
seller to wager money to threaten to invoke a dispute resolution system that
determines who were honest. Intuitively, an agent will wager money to settle
the dispute only if they think they will win the dispute. This deters an agent
from misbehaving, as they can infer that the other agent would threaten them
with invoking the dispute resolution system. The dispute resolution system is
in turn implemented as a decentralized jury system. Here, the main challenge
is to ensure the agents exert an effort to assess the evidence and vote in favor
of the honest agent. In a decentralized and anonymous setting, there is no way
to hold an agent accountable to their vote, and worse yet, the true state of the
dispute is unobservable to the mechanism. We analyze a class of mechanisms
that use the wager from the losing agent to compensate only those jurors that
made the majority decision. We show that the mechanism is likely to produce
good adjudication outcomes under reasonable assumptions. While variations
of these ideas are already proposed and deployed in practice, to the best of
our knowledge, they lack a thorough and rigorous analysis, making it unclear
under which conditions these markets can be assumed secure and/or comply
with laws and regulations. By contrast, our system is secure under rather
minimal assumptions. Importantly, our system can be combined with recent
advances in cryptographic identity management to strike a reasonable balance
between privacy and compliance with laws and regulations.

Our work can be considered a step in formalizing decentralized commerce
systems, and provides a number of tools and models to analyze incentives in
smart contracts — we believe that more foundational work needs to be done
before these systems can be deployed and used in practice.
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Resumé

Traditionelt foretages handel af varer over internettet ved hjælp af en betroet
tredjepart, der holder betalingen i depot og mægler mellem køber og sælger.
Tredjeparten formodes at opføre sig ærligt grundet dets omdømme: hvis den
træffer dårlige beslutninger, vil dens kunder flytte til et andet market og
aktierne tabe værdi. Denne effekt underbygger den enorme success af diverse
handelsplatforme, der har set en eksplosiv vækst de sidste årtier. Desværre
udgør disse systemer en privatlivsrisiko udover andre problemer forårsaget af
deres dominante markedsposition.

I denne afhandling foreslår vi et system til fuldt decentraliseret handel
mellem rationelle agenter, der interagerer ved hjælp af en blockchain. Sys-
temet består grundlæggende af en depotmekanisme, der tillader både køber
og sælger at satse penge for at true med at anvende en mægler. Intuitivt vil
agenterne kun satse penge, hvis de regner med at vinde mæglingen. Dette
afholder en agent fra at opføre sig uærligt, da de kan slutte, at den anden
agent i givet fald vil true dem med mægling. Mekanismen til mægling er da
implementeret som et decentraliseret jurysystem. Her er den største udfordring
at få jurymedlemmerne til faktisk at kigge på bevismaterialet. I en decentralis-
eret og anonym verden kan jurymedlemmerne ikke holdes ansvarlige for deres
stemmer, og værre endnu er den faktisk tilstand af disputsen ikke observerbar
for mekanismen. Vi analyserer en klasse af mekanismer, der benytter de penge,
der blev satset af den tabende part, til at betale de jurymedlemmer, der foretog
den afgørende beslutning. Vi finder, at denne mekanisme resulterer i en god
mægling under rimelige antagelser. Selvom variationer af dette system er
allerede er implementeret i praksis, mangler disse efter vores overbevisning en
grundig spilteoretisk analyse, hvilket gør det uklart under hvilke antagelser
disse systemer kan formodes at være sikre. Derimod er vores system beviseligt
sikkert under forholdsvis minimale antagelser. Ydermere, kan vores system
kombineres med nye udviklinger inden for kryptografisk identitetshåndtering
til at finde en fornuftig balance mellem privatliv og overholdelse af lovgivning.

Vores arbejde kan betragtes som et skridt mod at formalisere decentralis-
erede handelssystemer og giver en række værktøjer til at analysere incitamenter
i smart contracts – vi mener, at mere grundlæggende arbejde er nødvendigt
før disse systemer kan anvendes i praksis.
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Prologue

A car honks and swerves to avoid a pedestrian. The sound of screech-
ing tires is faintly heard through the window that faces the street.
Alice has been awake for some time. Her room is dimly lit as the
sun starts to peer through the shutters. She knows it is too early

to get up so she lies thinking. Today is the day where she will finally get her
money back. The jury had two days to reach a decision that will be finalized
by noon today. Her evidence was indisputable, she reckoned, so surely they
will vote in her favor. And to think what could have happened if she did
not act as quickly as she did. What happened was the following: the smell
prompted her to pay attention, as the toaster starting emitting a foul odor of
burnt plastic. She turned her head and found that the machine was producing
smoke and bright sparks. She felt a sharp rush of adrenaline and reached to
unplug the device. There was no immediate sign of fire but she stood frozen
and inspected the machine without blinking for twenty-two seconds. She had
used the toaster only a handful of times previously, so it was clearly faulty
from production. She grabbed her phone and photographed the machine from
three different angles. The plastic cover had visibly melted on one of its sides
and it was still producing a bit of smoke. She pondered what to do with the
machine and placed it under the fume hood that she turned on at the highest
setting. She went to sit at her desk and turned on her desktop computer. She
opened up the contract for the toaster and clicked the button that raises a
dispute. The toaster was not even that expensive – 39,95€ + 8€ shipping –
but she felt compelled to seek redemption for almost being set on fire. She
hastily wrote a description of what had happened and attached the photos
that she took on her phone. She knew that raising a dispute requires her
to submit a deposit to prove she is serious. She felt convinced her evidence
was unequivocal, so she transferred the 47,95€ required to raise a dispute.
The seller now has twenty-four hours to respond to the dispute. Surely, they
would forfeit and Alice would get back her money. Several hours went by
with Alice constantly checking her phone to see if she got her money back yet.
Finally, she received a notification on her phone that the seller had responded
to her dispute. “Dispute was Countered”. She was taken aback and stared at
her screen in disbelief. She refreshed the page but nothing had changed; her
dispute had, in fact, been countered. The seller insisted that the photos she
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uploaded were not genuine and suggested that maybe they had been generated.
Like her, the seller had also transferred a deposit of 47,95€. Alice rolls over on
her side and reaches for her phone on the nightstand. It is barely 6am but she
is wide awake and decides to start her day.

Bob peeks at his wrist watch and picks up the pace as he rushes towards
the bus stop. It is 11:23am. The light turns green and bus no. 87 starts driving.
It pulls over at the bus stop and opens its doors. Bob makes it inside and
finds a seat near the entrance. He sits down and lets out a sigh. His heart is
racing but now he can relax. He pulls out his phone and notices a notification:
“Judgment Pending - Anonymous v. WeToast”. Oh no! He had forgotten about
the case and now there is only half an hour left to make a verdict. He clicks
the notification and opens up the contract. A user had purchased a toaster
from the company WeToast and claims it caught fire after using it only a few
times. They had attached three photos of the toaster with the cover partially
melted. The seller claims the photos are not real and were generated as they
are not accompanied by a proof of authenticity. Bob looks at the photos. The
lighting is indeed a bit strange and something seems off. The traffic light turns
red and the bus comes to a halt. Bob has to get off at the next stop. He looks
once more at the photos and decides to vote in favor in WeToast. He gets up
from his seat, exits the bus and jogs towards the lecture hall.

As the clock turns 12:00pm, an automated series of events transpires. First,
the votes of the jurors are tallied. A total of twelve votes were cast, eight of
which are in favor of Alice and four of which are in favor of WeToast. As
the majority decision rules in favor of Alice, she is declared the winner and
is repaid the 47,95€ she had paid for the toaster, as well as the 47,95€ she
had staked. WeToast is repaid nothing and lose their wager of 47,95€ as well
as their marginal cost of having produced and shipped the toaster. Second,
the jurors that voted in favor of Alice share a reward, while the jurors that
voted in favor of WeToast share a penalty. The case had a total reward of
79,95€, so each juror had staked 79,95€ - 47,95€ = 32€. This reward is shared
among the eight jurors in the majority who are each repaid 32€ + 79,95€ / 8
= 42€, yielding a profit of 10€. The remaining four jurors – including Bob –
share the penalty of 32€, and are thus repaid 24€, causing each of them to
lose 8€. Alice is thrilled to see that all her money was repaid. She may have
spent some time dealing with the dispute, but at least she did not have to pay
for the faulty toaster. Bob wishes that he had spent more time deliberating
before placing his vote.



Chapter 1

Introduction

“However beautiful the strategy, you should occasionally
look at the results.”

Winston Churchill

The story of Alice and WeToast describes a system that enables
any two agents to exchange goods and services for money: Alice
purchased a toaster online from the company WeToast, who for
whatever reason delivered to her a faulty machine. Fortunately, she

raised a dispute and was able to get her money back. The system is designed
to disincentivize malicious behavior, in the sense that an agent should expect
to lose money by attempting to cheat. Indeed, the behavior of WeToast seems
strange: we cannot know if WeToast delivered a faulty toaster out of negligence
or out of malice. It can be assumed that the seller knows the condition of
the item they are selling. Thus, WeToast would have known that sending the
faulty toaster would result in Alice raising a dispute. In this case, they should
have been reluctant to counter the dispute, knowing that doing so requires
them to stake money that they would probably lose. Knowing they would not
want to counter the dispute, we can infer they would also not want to send
the faulty item — they can infer that the recipient would raise a dispute and
probably win that dispute. This is an unfavorable outcome for WeToast. By
contrast, if the payment is large enough, they would get a net profit by instead
sending the good item, as the buyer would presumably accept delivery of the
item, as also they might also be faced with a dispute they would probably
lose, if they were to raise a dispute. We might say that WeToast behaved
irrationally. Our goal is to ensure that cheating is always irrational.

The system we just described is an alternative to centralized marketplaces
such as Amazon, eBay, Alibaba, or Etsy. Of course, with centralized mar-
ketplaces being so well-established, this begs the question of why we should
bother trying to replace them. After all, these systems work well most of the
time [105]. Indeed, a decentralized alternative immediately raises a number
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4 CHAPTER 1. INTRODUCTION

of practical and ethical concerns. First and foremost, we might ask if the
decentralized marketplace is secure — are there any reasonable assumptions
under which we can prove that the system is secure? Secondly, if these systems
are, in fact, fully decentralized and potentially anonymous, to what extent can
they be expected to comply with laws and regulations?

In this thesis, we explore designing such a decentralized marketplace and
give an affirmative answer to the first of these questions. The second question
can be answered by choosing an appropriate blockchain: if we use a blockchain
with revocable anonymity [50], such as the one proposed by Damgård et al.
[76, 79], agents are in principle anonymous but can be de-anonymized under
cooperation of the appropriate authorities, say if illegal behavior is suspected.
Our results hold in a rather minimal model where the agents are rational,
care about money, and have shared access to a blockchain. Along the way, we
develop several new models and methods for reasoning about smart contracts
in these highly strategic environments. Our work can be considered a step
in formalizing decentralized commerce systems, and provides some tools to
analyze smart contracts from a game-theoretic perspective — we believe there
is still much foundational work to be done before these systems can be deployed
and used in practice.

Why Decentralization? The key feature of our proposed system is that here,
all processing of data and funds can be done in a fully decentralized manner,
obviating the need to trust any single agent1. By contrast, the security of a
centralized marketplace inherently relies on users being able to trust these
services: if such a marketplace is controlled by an adversary, no guarantees can
be made on its security. In particular, such marketplaces have inherent privacy
concerns, in that centralized marketplaces may collect data on their consumers
to use e.g. for targeted advertising [139]. There are also other potential
problems: such a centralized marketplace may have an incentive to engage in
monopolistic behavior, such as removal of competitors’ products or differential
pricing based on customer demographics [134]. Since the 2010s, various markets
were deployed online that allow users to transact with more anonymity, so-
called darknet markets [21, 163]. A darknet market is a centralized market that
runs on a mix network (such as Tor [86]) and uses cryptocurrency [18, 257] for
payments that the market holds in escrow until the trade has been completed.
This mechanism has proved to be remarkably efficient, evidenced by the
enormous market caps of some of the larger markets [185]. Unfortunately, the
vast majority of this volume is related to criminal activities, such as the sale of
drugs, weapons, and counterfeit passports [46] — some trade-off needs to be
carefully struck between user privacy and compliance with laws and regulations.

1Specifically, we show that both the escrow contract and the jury system can be im-
plemented as automated programs (smart contracts) that run on a ‘world computer’ (a
blockchain), for which we prove it is secure in a model where agents are rational — we make
these notions more precise in Section 1.2.
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1.

2.

3.

Figure 1.1: High-level depiction of the main escrow contract that allows the
company WeToast to send a package (dashed lines, top) to Alice in a way that
disincentivizes cheating. The workflow of the contract is as follows. 1. Alice
transfers the money to the contract. 2. WeToast sends the toaster. 3. Alice
can either accept or reject delivery of the item. If she accepts, the money is
transferred to WeToast and the trade is finalized. The dotted lines to the
jurors (bottom) indicates that they are only invoked in case either Alice or
WeToast raises a dispute.

By design, darknet markets also suffer from other problems. Indeed, darknet
markets are infamous for exit scamming [138], where the market is suddenly
closed, with the operators stealing all the funds that were held in escrow. Such
an attack may yield profits in the millions of dollars. It is often difficult, if
not impossible, to find the perpetrators and hold them accountable for their
actions [89].

One solution that solves both of these problems involves combining a
fully decentralized marketplace with recent advances in cryptographic identity
management [50] that we will detail further in Section 1.2.

Decentralized Escrow. The first contribution of this thesis is to propose
a mechanism for decentralized escrow (Chapter 3). It works as follows: a
seller broadcasts an advertisement to a set of potential buyers. A buyer then
enters into a contract with the seller to agree on the terms of the transaction,
such as the delivery method or other details, e.g. if the item is customizable.
Both agents sign the contract and the escrow game start (see Fig. 1.1 for an
illustration). The buyer transfers the payment to the contract which is then
held in escrow. The seller then completes their end of the transaction and
notifies the contract that the work was completed. The buyer then either
accepts completion of the transaction, in which case the payment is transferred



6 CHAPTER 1. INTRODUCTION

to the seller and the contract is terminated, or the buyer raises a dispute,
claiming the transaction was not completed as agreed. To disincentivize
frivolous disputes, raising a dispute requires the buyer to submit a stake to the
contract of roughly the same amount as the payment itself. The seller can then
either forfeit and accept defeat, in which case all the money is returned to the
buyer and the contract is terminated, or they can counter the dispute by also
submitting a stake to the contract. In this case, we invoke an external dispute
resolution system to determine who were the honest agent (in a black-box way,
we analyze such a system in Chapter 4). We then return the payment and the
stake to that agent. The losing agent’s stake is used to pay for resolving the
dispute and the contract is terminated. We show that this contract is indeed
secure in a model where the agents are rational and the dispute resolution
system is biased in favor of the honest agent. In this case, the seller always
completes their end of the transaction, and the buyer always accepts delivery —
the dispute resolution system is never invoked and is only needed as a ‘threat’
to disincentivize dishonest behavior. We will return in more generality to these
threats later in this thesis (Chapters 6 and 7).

It is an important feature of this escrow that the dispute resolution is
invoked optimistically, i.e. only when necessary. An alternative implementation
invokes the dispute resolution system for every trade. This is undesirable for
two reasons: first of all, resolving a dispute presumably incurs some cost, and
secondly, unless the dispute resolution system is perfect and has zero percent
error, there will be instances in which both agents acted honestly, and the
system rules in an agent’s disfavor. Invoking the dispute resolution system
only optimistically arguably solves both of these problems.

1.1 Dispute Resolution Systems

Security of the escrow contract inherently relies on being able to trust the
dispute resolution system: it is not clear if it is possible to design a dispute
resolution system that is biased in favor of the honest agent. When the content
of the transaction is a digital item (such as an e-book), there are dispute
resolution protocols that work under computational assumptions [96, 97, 128].
However, these protocols inherently rely on being able to encode the item in
question as binary strings, and thus do not meaningfully generalize to the case
where the item is physical (such as a toaster). The most natural solution is to
designate a third agent to act as the arbiter. This approach is used in practice
in systems such as OpenBazaar [8] and ArbStore [7]. In both cases, security is
argued using a reputation system: presumably, the arbiter cares about their
reputation, giving them some incentive to vote impartially (in ArbStore, the
arbiters’ identities are public). Such systems are supported theoretically e.g. by
Dellarocas [85] who finds that under the right conditions, a long-lived arbiter
has an incentive to behave honestly when faced with many disputes. The
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incentive is strongest in the initial phase where the arbiter has to work hard
to build up a good reputation and diminishes as their reputation increases,
ultimately disappearing altogether when the arbiter nears the ‘end of its life’.
Several systems have been proposed that formalize the notion of reputation,
notably the beta reputation system [140] for e-commerce, and the EigenTrust
algorithm [148] for peer-to-peer systems. Recently, reputation systems have
also been explicitly designed for blockchain-based e-commerce systems [267].
However, it is not clear that all arbiters care about their reputation when they
are anonymous and cannot easily be held accountable for their judgments. In
any case, relying on reputation is undesirable when the goal is to decentralize,
as again, these systems inherently have a single point of failure. Ideally, we
want to distribute the trust across a wider set of agents to make it more
plausible that the system works as intended.

When the moderator solution does not work, the next best solution involves
using a jury system where we appoint a set of jurors to determine which agent
were honest. We then ask the buyer and the seller to provide evidence that we
forward to the jurors, ask them for their vote, and take the majority decision.
Variants of this setup are well-studied in voting theory [55, 70, 262], and
social choice theory [9, 43], in what is known as truthful elicitation. Here,
quadratic scoring rules [116], Bayesian truth serum [206] and peer-prediction
methods [189] find applications in various different contexts [101]. However,
truthful elicitation methods do not seem appropriate for our use-case, as we
fundamentally do not care about whether the jurors vote truthfully. Instead, we
care only about whether or not the outcome is biased towards the ground truth:
ideally for us, a juror with the ‘wrong’ opinion would vote against their belief
to have a higher probability of recovering the ground truth. The fundamental
problem with a jury-based approach is that the jurors are anonymous and
cannot be held accountable for how they voted, since the ‘true’ outcome is
inherently unobservable to the blockchain. Presumably, assessing the evidence
requires some effort by the jurors which they would rather not expend unless
necessary, e.g. unless compelled by morality or persuaded with payments.
Indeed, there are various models in the literature [111, 112, 187, 198] studying
the relation between the effort exerted and the preferences of the agents.
However, this line of work is not immediately applicable to our setting where
the jurors might not care about the outcome. Generally, a mechanism that
forwards content onto a blockchain is known as a blockchain oracle [49]. Many
solutions are proposed in the literature, some of which are also deployed in
practice, including Town Crier [263], Astraea [3], ChainLink [44], and Infochain
[117]. A common feature of these systems is that they lack a thorough game-
theoretic analysis or rely on rather idealized models where e.g. there is a
trusted agent, the ground truth is eventually observable, or all the jurors are
biased towards the ground truth (and so, correctness of the adjudication follows
directly from an appropriate concentration bound [137]).

In our setting with anonymous jurors, we will explicitly assume that the
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jurors are morally agnostic and thus do not care whether or not they collectively
reach the correct outcome. For such jurors, the best-response is to simply
vote randomly without assessing the case evidence, as to do so would require
an effort they would rather not expend. This results in a random coin flip
which does not conform to the requirement needed for the escrow contract to
work. Instead, we have to use payments to incentivize the jurors to properly
assess the case evidence. To avoid the same problem, these payments should
be somehow conditioned on the votes of the agents. One natural proposal
which is used in practice by systems such as Kleros [169, 170] and Augur [201]
is to reward jurors for voting in accordance with the final verdict2. The hope
is that if the payments are set correctly, the jurors are incentivized to exert
an effort to receive the payment, in such a way that the jurors collectively
reach the correct verdict. Lesaege, Ast and George [169] argue that such a
mechanism results in good outcomes using focal points [219]: the jurors expect
the other jurors to vote honestly, so they will do so themselves to obtain the
payment. In general, the incentives of these systems are only sparsely studied:
Lesaege, George, and Ast [170] propose a payment function for which they
show truthfulness is a weakly dominating strategy, in a model where the jurors
expect 1) the other jurors to vote independently of themselves, and that 2) the
outcome is independent of the votes of the jurors. We will later show that, in
general, the full strategic behavior is more complicated.

Adjudication Games. The second contribution of this thesis is to formally
study a model of the adjudication game that we just described (Chapter 4).
This section is adapted from the introduction of [54]. For simplicity, we
restrict our attention to binary disputes that, in particular, may be used in
the aforementioned escrow mechanism. We then consider majority voting and
consider payment functions that reward those jurors that made the majority
decision and (optionally) punish those jurors that were in the minority (see
Fig. 1.2 for an illustration). We assume jurors have access to a history of similar
disputes in the past that they can use to correlate the outcomes with their
own understanding. The role of payments is to amplify an agent’s incentive to
take these correlations into account when producing their vote: if there is no
correlation, the agent will vote randomly. If instead, the correlation is positive,
they will cast their opinion as their vote, while if the correlation is negative,
they will vote opposite to their opinion. It is important to remark that our
work deviates from the traditional literature on voting theory [55, 70, 262], as
we do not care about truthfulness as long as the outcome of the adjudication
is mostly correct. We analyze the equilibria of the resulting strategic game
under standard assumptions on the utilities of the jurors (risk-neutrality and

2The full system Kleros is significantly more complicated: it has measures to mitigate
Sybil attacks, as well as subcourts and appeal mechanisms. In this work, we focus only on
the strategic behavior in the adjudication mechanism itself.
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1. 2.

3. 4.

Figure 1.2: Illustration of the jury system. 1. Alice and WeToast both submit
evidence of their honesty to the court system, as well as a deposit of two coins.
2. The court system forwards the evidence to the jurors. 3. All jurors report
back their vote to the court contract. 4. Alice had the majority vote, so she
receives back her deposit, and the leftover money is used to compensate those
jurors that voted for her.



10 CHAPTER 1. INTRODUCTION

quasi-linearity). We give sufficient conditions on the payments so that the
equilibria are simple, in the sense that all agents either vote randomly or are all
biased towards the same outcome. For these equilibria, it is easy to bound the
accuracy by application of e.g. a Hoeffding bound [137]. We show that these
conditions are satisfied e.g. by the simple ‘threshold payment function’ that
simply gives a constant reward to each juror in the majority. The conditions
are also satisfied by a simplified version of the payment function used by Kleros
[169, 170], the award/loss sharing function, where the minority shares a fixed
cost which is then split as a reward among those jurors that voted in the
majority. We show how to find minimal payments that satisfy these conditions
for a simple model of the jurors using linear programming. We show that for
this class of payment functions, there are three different equilibria: a ‘trivial’
equilibrium where all agents exert zero effort and vote randomly, and two
symmetric equilibria: a ‘good’ equilibrium where no agent is biased towards
the bad outcome, and a ‘bad’ equilibrium where no agent is biased towards the
good outcome. Finally, we perform computational experiments to justify that
jurors in practice tend to reach the good equilibrium with high probability,
assuming the jurors are, on average, well-informed.

Our work suggests that it is indeed possible to construct a dispute res-
olution mechanism that is biased in favor of honest agents, which weakens
the assumptions needed to construct the decentralized marketplace that we
propose in this thesis. The model may also be applicable to other scenarios,
e.g. in peer reviewing.

1.2 Blockchains and Smart Contracts

Throughout this thesis, we will consider a model in which the agents have
shared access to a blockchain that allows them to deploy smart contracts. We
will now give a simplified description of what we mean by this: at a high level,
a blockchain is a decentralized ledger that stores data in a totally ordered
manner [18]. The ledger is represented by a chain of blocks of data (see Fig. 1.3
for an illustration), hence the name. This chain is replicated across many nodes
around the globe. To enter the network, a new device queries the network for
the latest copy of the chain: they then download the entire blockchain and
verify its authenticity on their own machine. The idea is that knowing the
latest block in the chain allows for determining the balance of each account by
computing backwards to the first block (the genesis block). This is used to
prevent double-spending, though this verification stepmay be expensive. For
Bitcoin as of 2023, the entire ledger takes up nearly 500 GB and takes up to
five days to verify on an ordinary computer. While this is small compared to
industrial databases, this data has to be stored on every device that wants to
make transactions. There are ways to avoid having to go back to the genesis
block, e.g. using a finality layer [48]: here, the network periodically runs
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Figure 1.3: High-level depiction of the function of a blockchain. In the bottom,
we see the blockchain which consists of a chain of blocks, each of which
contains multiple transactions. Knowing the latest block in the chain allows for
determining the balances of each account. When there are multiple competing
chains, the longest chain is regarded as the current one (in this case, the
top-most chain). The chain is extended by a set of miners (top-left) who
attempt to solve a puzzle. When a miner solves the puzzle, they are designated
as a block producer and are allowed to use the solution of the puzzle to extend
the chain using some number of transactions from the transaction pool.

a consensus protocol on the state of the chain, to avoid having to redo the
entire computation [87, 266]. Other solutions involve incremental verifiable
computation [246] where the blocks propagate a succinct proof that they were
generated from the genesis block.

Extending the Chain. The chain is periodically extended by designating an
agent — the block producer — to choose some data to include in the next block.
The block producer is chosen using a lottery for which the distribution of
ballots is determined by some scarce resource that can be reasonably assumed
to be majority controlled by honest agents. The prototypical scarce resource is
that of computation, where the block producer is chosen by having agents solve
a hard cryptographic puzzle, i.e. inverting a hash function [94]. This is the
design used e.g. by Bitcoin [18]. When an agent successfully finds a preimage,
they are allowed to propose the next block and choose which transactions to
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include. They are compensated for their with a block reward well as tips from
the users that want their transactions included. The block producer agent
essentially has full control over the next block, subject to the transactions
included being ‘legal’, in the sense that no account ends up having a negative
balance, and that all transactions verify under the appropriate public keys. If
the block producer proposes an illegal block, it will be rejected by the users
and they will lose their reward. The agents that attempt to solve the puzzle
are known as ‘miners’. Typically, finding a block is a rare event, so miners tend
to pool together their resources and share the block reward [173]. This reduces
the variance of the payoff from mining [51]. A blockchain that is based on
inverting a cryptographic hash function is said to use proof-of-work [94, 141].
They have since been criticized for their intense energy consumption: a single
Bitcoin transaction has an energy consumption of 700 kWh as of 2023 [233],
almost the monthly energy consumption of an average US household (886
kWh per month as of 2021 [4]). To combat this, other solutions have been
proposed that rely on the scarcity of other resources, including proof-of-stake
[154], proof-of-space [95], or proof-of-space-time [190]. These schemes typically
requires the miners to stake money — for Ethereum, a miner is required to
stake 32 ETH [174], more than 60.000$ , in order to be allowed to produce new
blocks. To incentivize agents to expend effort to extend the chain, they are
given a cash reward for their work. The data that is put in blocks come from
users who want to put data on the chain. Each new block is typically quite
small which leads to the issue of how the block producer should allocate the
limited space on the block. To incentivize efficient allocations, users typically
pay fees to the block producer for their data to be included, thus implementing
an auction [212]. Because of the decentralized nature of the protocol, at any
given time there might be several extensions of a given chain that may conflict
with each other. The rule is then that whichever chain is longest is regarded as
the current state of the chain. As long as the resource in question is controlled
by a majority of honest agents, the longest-chain rule is known to result in
various desirable properties [19, 36, 72, 107, 228]. However, for the purposes
of this thesis, we will assume the blockchain is perfect and incorruptible and
set aside practical issues of actually implementing the blockchain.

Smart Contracts. Blockchains are most famously used to implement decen-
tralized money by having a set of accounts and using the data in the blocks to
keep track of transactions between these accounts. The consensus property of
the data prevents double spending attacks which is what makes the technology
attractive as an alternative to central banking. The first blockchain that was
used in practice is Bitcoin [18] which as of 2023 remains the largest blockchain
(by volume) [68]. However, there is nothing that inherently limits the data
stored on the chain to being transactions of money: in principle, any data
can be stored on the chain, even programs. This idea was pioneered by the
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blockchain Ethereum [257] to support the automatic execution of arbitrary
programs on the chain, in what is know as smart contracts [237]. These
programs are typically written in a high-level language such as Solidity and
then compiled to a low-level representation such as EVM (Ethereum Virtual
Machine) [258] bytecode that can then be executed automatically on the chain.
Here, rather than the transactions stating that X money was transferred
between this and that account (as is the case for Bitcoin), now transactions
include instructions such as ‘add the values of these two registers’ or ‘copy
this value’. Each miner then maintains the full state of the chain and executes
these bytecode instructions on their own machine. They are compensated for
this activity by the user executing the instructions. This is referred to as the
‘gas cost’ of executing a transaction. Ethereum maintains a detailed list of gas
costs for each of its bytecode instructions [258]. Fundamentally, just as how
knowing the latest chain reveals the balance of all accounts, so does knowing
the latest chain reveal the state of all smart contracts currently deployed on
the chain. Thus, smart contracts enable the automatic processing and transfer
of money which makes them attractive for various applications — and also
attractive for adversaries to attack [93]. In this thesis, we will give several
applications of smart contracts in the context of commerce, dispute resolution,
and secure computation. Throughout this thesis, we will assume an abstract
ideal blockchain that is secure and incorruptible. We have omitted a precise
definition of the functionality offered by such a mechanism and trust that it is
clear from the context what we mean. There are formal models of blockchains
and smart contracts [19, 24, 152, 156] in the universal composability (UC)
model [52], but consider such modeling outside the scope of this thesis.

Choice of Blockchain

We did not consider any specific blockchain in the previous sections: in fact,
our work is mostly transparent to the choice of blockchain, as long as the
blockchain is capable of executing smart contracts. As a result, our contracts
inherit many properties of the underlying blockchain, which means they can
be instantiated in a variety of ways. We now consider some instantiations of
the contract in different types of blockchains. Instantiating the contract on
a public ledger such as Ethereum is the most straightforward solution. Here,
users are implicitly anonymous, while the flow of money is globally visible
[185]. This means that accounts are pseudonymous and that all transactions
between accounts are public. These curious properties makes it possible to use
data mining algorithms to somewhat deanonymize its users [32, 132, 184, 209],
leading some scholars to suggest that Bitcoin offers essentially no anonymity at
all [149]. However, for some applications (notably in commerce), pseudonymity
can be considered a feature: having access to the transaction history of a
seller indicates how likely they are to cheat and holds the agents somewhat
responsible for their actions [100, 238].
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Privacy-Preserving Blockchains In response to the perceived lack of anonymity
in traditional blockchains such as Bitcoin and Ethereum, alternative blockchains
were developed that make use of cryptography to ensure anonymity, notably
Monero [247] and Zerocash [26]. These systems hide the identities and the
values of all transactions in the network by including the transactions in
‘anonymity sets’ from which it is hard to determine the origin and destination.
Correctness of the blocks is ensured with the use of zero-knowledge proofs
[38, 84, 118] (so-called zk-SNARKs [33, 126] are often used in practice). Varia-
tions of these systems are known to be provably secure under computational
assumptions [103, 202]. The main drawback of using these blockchains is
that they inherently make it impossible to enforce regulation on the goods
being transacted, in particular, anti-money laundering (AML) and ‘know your
customer’ (KYC) regulations [204]. A market on such a blockchain would
likely be used primarily for criminal activity [46]. Note that Zerocash [26] does
have a solution for managing KYC and AML, although this solution relies on
being able to trust a single agent.

Accountability and Revocable Anonymity We now elaborate on how the
proposed marketplace can be made to comply with laws and regulations, using
the identity management system proposed by Damgård et al. [76] (a system
which is used in practice by Concordium [79]). To register in such a blockchain,
an agent needs to identify itself with an identity provider using some formal
document. They can then create new anonymous user accounts to be used on
the blockchain. Using a designated verifier zero-knowledge protocol, a user
can prove to satisfy some predicate on their real identity, such as verifying
that their age is ≥ 18. The users are, by default, anonymous, but can be
deanonymized under suitable conditions, say if illegal behavior is suspected.
This requires an agreement between several qualified authorities, the so-called
anonymity revokers. For example, the local police, or the local courts may
be able to deanonymize users in their relevant jurisdictions. This serves as
a “best of both worlds” in that regular users retain their anonymity, while
criminal users are subject to legal repercussions. This would allow for a kind
of certification or blue-print of marketplaces based on smart contracts even
if they are essentially anonymous, so long as the underlying blockchain uses
revocable anonymity.

1.3 A Framework for Designing Secure Contracts

The contracts we propose for decentralized commerce and adjudication are
quite simple and seemingly follow a generic pattern of using payments to
incentivize certain behavior and change the equilibrium from dishonesty to
honesty. It is quite natural to ask if we can adapt our solution to also work in
other settings. Ideally, we would want a generic framework where the designer
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inputs an arbitrary game and an arbitrary intended behavior, for which the
framework outputs deposits that incentivize the intended behavior. Of course,
this is not hard to do if we assume all actions taken are public record — we may
then simply fine every agent that deviates from their intended behavior. If the
fines are set sufficiently large, this always incentivizes them to do what we want
(assuming the agents care about money). Unfortunately, the actions taken by
the agents are not always externally observable: in the case of decentralized
commerce, both the buyer and the seller know whether or not the correct item
was indeed received – however, this information is not externally observable
which is precisely why we needed the dispute resolution system. In order for
this problem to be interesting we need some analogue of the dispute resolution
system for arbitrary games.

Incentivizing Arbitrary Behavior. The third contribution of this thesis is a
framework for computing payments to incentivize an intended behavior in an
arbitrary game (Chapter 5). We give a model for specifying how actions can
be externally observed through an information structure. Here, we consider
some fixed alphabet of possible outcomes and associate with each leaf of the
game a pdf on this alphabet that we may collect into an emissions matrix.
Being able to observe all actions thus corresponds to having an alphabet with
a size that equals the number of leaves, and having the emissions matrix equal
a permutation matrix. An example of a non-trivial information structure is for
the decentralized commerce game where the alphabet consists of three symbols:
a success symbol denoting that everything went well, and two other symbols
which are emitted by the dispute resolution system that correspond to the
buyer, respectively the seller, being ruled dishonest by the jurors. A payment
scheme can then be modeled as a mapping that takes as input a symbol from
this alphabet and outputs a payment for each agent. Such a payment scheme
can readily be implemented using a smart contract, assuming the contract
has access to the appropriate information structure: in this case, the outcome
of the commerce contract (see Fig. 1.4). Our model generalizes the model of
‘adversarial level agreements’ by George and Kamara [109] that can recovered
as a special case of our model where the emissions matrix is a diagonal matrix.

We show several results on the relation between the payments and the
information structures. Our first result is that payments can be used to
implement any intended behavior if and only if essentially all actions can
be observed, i.e. if the emissions matrix is full rank. We then show how
to restate our commerce contract in this model and obtain a similar set of
payments as we did by analyzing the contract explicitly. Next, we analyze the
computational complexity of finding optimal payment schemes and find that
this problem is equivalent to linear programming under logspace reductions,
and hence PTIME-complete [121]. We then demonstrate the power of the
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1. 2.

3.

Figure 1.4: Workflow of the generic mechanism to incentivize a specified
behavior in arbitrary games. 1. The agents transfer a deposit to the smart
contract. 2. The agents play the (unchanged) game which emits a symbol to
the smart contract. 3. The smart contract repays the agents based on the
symbol it received. If these payments are instantiated correctly, the agents will
have an incentive to behave as we would like them to.

model by analyzing a more complicated scenario involving secure multi-agent
computation (MPC) [25, 60, 260, 261]. In MPC, a group of n agents wishes
to compute some public function f on private inputs x1, x2, . . . , xn using an
interactive protocol, in such a way that the interaction leaks nothing about
the inputs of a given agent — other than that which can be gathered from
the function output f(x1, x2, . . . , xn) itself. Such protocols are said to be
secure against an honest-but-curious adversary, and the protocol is said to
have passive security. If in addition, security holds even if some of the agents
are allowed to deviate arbitrarily, we say the protocol enjoys active security
[74]. In this thesis, we will consider an intermediate notion of security, known
as (publicly verifiable) covert security where agents are allowed to deviate but
are caught with some fixed (constant) probability [12, 16]. We show how to
model a covert secure protocol using an information structure. We then derive
an expression for the optimal size of the payments, such that the equilibrium
of the resulting game is for all agents to act honestly. The result is a compiler
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that takes as input a covert secure MPC protocol and outputs a protocol that
is secure against rational agents. Famously, Halpern and Teague [130] showed
that MPC is impossible for rational agents that 1) want to learn the function
output, and 2) prefer that as few other agents also learn the function output.
We circumvent this impossibility using quasi-linearity of the agents’ utility
functions. Namely, property 2) does not hold if we can pay an agent to accept
that other agents also learn the output. Finally, we use properties of matrix
norms to derive a lower bound on the size of the payments needed to ensure
honesty. We find that this lower bound matches asymptotically the size of the
payments needed for the MPC.

1.4 Smart Contracts and Commitments to Strategies

All our work so far is set in a model where the agents have shared access to
a blockchain that allows them to deploy smart contracts. We have seen that
this is a powerful model that, among other things, enables fully decentral-
ized commerce, dispute resolution systems, and rational secure multi-party
computation. However, there is an important aspect of this model that we
have ignored so far: the agents may themselves deploy smart contracts to act
on their behalf. This turns out to change the structure of the equilibria in
non-trivial ways, as an agent may use the contract to restrict their set of moves,
effectively committing to acting irrationally in certain situations. This in turn
may change the best response for the other agents, thus inducing a meta-game
of determining which is the best contract to deploy.

Stackelberg Equilibria. A simple model with commitments to strategies was
introduced by von Stackelberg in 1934 [251] to model competing firms where a
leader company has a market advantage and is allowed to choose their strategy
first. The leader’s strategy is then revealed to a follower company who then
adaptively chooses their strategy. The resulting equilibrium is known as a
Stackelberg equilibrium, and can also be extended to the setting of multiple
leaders [227] and/or multiple followers [177]. Because of first-mover advantage
[176], the leader is never worse off in the Stackelberg equilibrium, as the leader
can simply commit to doing nothing. Stackelberg equilibria are quite well-
studied and are important e.g. in control theory [23, 35, 88, 211] and security
games [150, 155, 230]. It is well-known that computing Stackelberg equilibria
on finite extensive-form games of imperfect information is NP-hard in the
general case [172], and remains NP-hard even to approximate for some classes
of games, see e.g. [42, 171] for an overview of some results in this direction.
More sophisticated models of commitments have since been proposed, including
reverse Stackelberg equilibria [17, 232] where the leader commits to a strategy
conditioned on the strategy chosen by the follower: the leader commits to a
mapping φ that for every strategy σF the follower may choose, defines what
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strategy φ(σF ) the leader will play, and gives this mapping to the follower.
This is strictly advantageous for the leader since they can punish the followers
for choosing the ‘wrong’ contract [17, 123, 135]. Such equilibria are even more
advantageous for the leader since the leader can punish the follower for choosing
the wrong strategy. A related line of work studies equilibria in the context of
arbitrary Turing machines, in what is known as program equilibria [193, 241].
Note that while Rice’s theorem implies that no computer program can verify
a non-trivial property of another program [210], the first contract does not
actually need to verify that the other contract satisfies an arbitrary predicate:
instead, the first contract can provide the other agents with contracts that
they must deploy (say, by publishing the source code on the blockchain), and
if not, it executes the threat. This means the other agents are faced with the
choice of deploying the contract given to them or accept the threat. A rational
agent will then deploy the contract given unless they receive an even worse
outcome by doing so. Reverse Stackelberg equilibria primarily find applications
in routing [124, 125] and in control theory [125, 175, 236, 240].

Smart Contract Moves

The fourth contribution of this thesis is to give a formal model of games with
smart contracts (Chapters 6 and 7). In this model, deploying a smart contract
corresponds to making a ‘cut’ in the move set for that agent which induces a
new game of exponential size, containing as subgames all the cuts that this
given agent can make. Each subgame corresponds to a contract where the
agent has cut away the given set of moves. We find that the Stackelberg
equilibrium is retained as a special case with one smart contract. The model
supports multiple such contracts that are allowed to reason about each other,
by making cuts that are conditioned on the cuts chosen by the subsequent
agents. We thus find that the reverse Stackelberg equilibrium can be recast
as a special case, containing two subsequent smart contracts. This means
that our model gives a unifying view of Stackelberg equilibria and reverse
Stackelberg equilibria and establishes a hierarchy of generalizations hereof. We
study the computational complexity of finding the subgame perfect equilibria
(SPE) in these games and show several lower bounds. In general, we find that
computing the SPE in these games is PSPACE-hard. More precisely, we show
that computing the SPE in a game of imperfect information with k contracts is
ΣP
k -hard. The reduction establishes as special cases hardness results that were

already known in the literature [41, 239]. Next, we show that computing the
SPE remains PSPACE-hard in games of perfect information when the number
of contracts is allowed to be unbounded (i.e. linear in the size of the game tree).
We also give an upper bound and show that two-contract games of perfect
information can be computed in time quadratic in the size of the description
of the game.
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1.

Give me your money or
I detonate the bomb

Go ahead

2. I deployed a smart contract
that detonates the bomb unless
you give me your money

Figure 1.5: Illustration of the power of commitments to strategies. 1. Alice
asks Bob to hand over all his money, with the threat of detonating a bomb
that would kill both of them. Bob refuses to cooperate because he can infer
that Alice would not actually detonate the bomb — it is but an empty threat.
2. Alice commits to detonating the bomb unless Bob hands over all his money
which forces Bob to cooperate.

Stackelberg Resilience. These results, disappointingly, imply that reasoning
about games deployed on a blockchain is a hard computational task. This is a
potential problem for the design of smart contracts (see Fig. 1.5): typically,
such contracts are analyzed in vitro under the assumption that agents cannot
arbitrarily commit to strategies. The contracts are then deployed in vivo
in a different context where the agents are, in fact, allowed to deploy smart
contracts to act on their behalf. This means that we should not expect whatever
analysis was conducted on the game without commitments to hold when the
contract is actually deployed. We say that a game is Stackelberg k-resilient if
it retains its equilibrium when k agents are allowed to arbitrarily commit to
strategies. We show that Stackelberg resilience is downward transitive, in the
sense that Stackelberg k-resilience implies Stackelberg (k − 1)-resilience. Note
that this is a non-trivial result because, conceivably, the removal of a contract
could potentially thwart an attack that relied on some agent being forced to
deploy a specific contract. The complexity results on smart contract moves
imply that Stackelberg resilience is hard to compute in general, but that it
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is efficiently computable for two-agent games of perfect information. We use
this approach to analyze the escrow contract introduced in the beginning of
this thesis and find that the contract is, in fact, Stackelberg resilient. This
means that the addition of contracts does not change the security analysis.
We also analyze another related escrow contract [11] and find that it is not
Stackelberg resilient. These results establish that Stackelberg resilience is a
non-trivial and hard-to-compute property. Finally, we consider an auction
with multiple identical items and demonstrate a Stackelberg attack. This
models the transaction fee mechanisms used by most blockchains. Here, a
user commits to a strategy that ensures they receive one of the items for
free, while forcing all other users to enter into a lottery for the remaining
items. The attack works under reasonable assumptions on the valuations of
the users, as long as the auction is not too congested. We find that the attack
is detrimental to the auctioneer who loses most of their revenue. This implies
that the transaction fee mechanisms of most major blockchains are vulnerable
to these commitment attacks and may be cause for re-evaluation of the use of
auctions in transaction fee mechanisms. It also suggests that other contracts
deployed on major blockchains may be vulnerable to these attacks.
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Thesis Organization

This thesis is based on the papers [54, 129, 164, 165, 222, 223] and is organized
as follows. In accordance with GSNS rules, parts of this thesis were also used
in the progress report for the qualifying examination.

Chapter 2. We give a formal model of game theory and introduce the tools
and notation that we will use for the remainder of this thesis. We also discuss
the applicability of game theory and its limitations. This chapter is based on
standard game theory literature.

Chapter 3. We propose a smart contract that enables any two agents to
exchange physical goods and services for money with the use of a blockchain.
The contract makes optimistic use of an adjudicator in a black-box manner.
We analyze the contract as an extensive-form game and prove that the unique
best-response for both buyer and seller is to behave honestly, assuming the
adjudicator is biased in favor of honest agents. Finally, we consider various
aspects of deploying the contract in practice, including transaction fees and
choice of blockchain. This chapter is based on the paper [222].

Chapter 4. We analyze a simple adjudication game involving binary disputes
and majority voting. We consider a set of rational and strategic jurors that
are indifferent to the outcome of the case and consider different payment rules
to incentivize them to exert effort in such a way that they collectively produce
a correct adjudication outcome. We characterize the equilibria of the resulting
game and find that for an appropriate choice of payments, there are there
three classes of equilibria: a trivial one, a good one, and a bad one. We
perform simulations to argue that, in practice, the jurors tend to reach the
good equilibrium. This chapter is based on the paper [54].
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Chapter 5. We propose a framework for reasoning about payments in the
context of blockchains. Our crucial insight is the notion of an information
structure that specifies which information is observable by the blockchain. We
study the problem of finding minimal payments that incentivize a specified
behavior, and find that this problem is equivalent to linear programming under
logspace reductions and thus P-complete. We give various applications of the
framework in the context of decentralized commerce and secure multi-party
computation. This chapter is based on the paper [223].

Chapter 6. We identify a subtle issue in deploying smart contracts, caused by
the fact that agents may themselves publish smart contracts. This induces a
‘meta game’ of determining the optimal contract to commit to. We propose a
model that captures these types of commitments by introducing ‘smart contract
moves’ that allow an agent to make cuts in their move set. We show that
our model captures Stackelberg equilibria (respectively, reverse Stackelberg
equilibria) as special cases, as games with one contract (respectively, two
consecutive contracts). We establish several bounds on the computational
complexity of these games and find that determining the SPE is PSPACE-hard,
even when the games are restricted to having perfect information. However,
we give an efficient algorithm that works for two-contract games of perfect
information. This chapter is based on the paper [129].

Chapter 7 We study how smart contract capability changes the equilibria of
games. A game that does not change is said to be Stackelberg resilient. We
find that the smart contract from Chapter 3 is indeed Stackelberg resilient. We
analyze a class of transaction fee mechanisms that we find to not be Stackelberg
resilient: we demonstrate an attack whereby the users will spontaneously
organize to conspire against the miner. The attack allows a user to have their
transaction included for free, while coercing the remaining users into entering
a lottery for the rest of the space on the block. We find that the attack works
under natural conditions for both first-price auctions, second-price auctions
and EIP-1559 (the transaction fee mechanism used by Ethereum). This chapter
is based on the papers [164, 165].



Chapter 2

Homo Economicus
“We call a man irrational when he acts in a passion, when
he cuts off his nose to spite his face. He is irrational
because he forgets that, by indulging the desire which he
happens to feel most strongly at the moment, he will thwart
other desires which in the long run are more important to
him. If men were rational, they would take a more correct
view of their own interest than they do at present; and
if all men acted from enlightened self-interest the world
would be a paradise in comparison with what it is. ”

Bertrand Russell

Game theory is the study of rational agents and their interactions.
It seeks to model interactions that involve agents with potentially
mutually incompatible preferences and tries to predict how the
agents will behave. Each agent is taken to be rational, in the sense

that they take actions that maximize a certain numerical quantity known as
their utility. This leads the agents to strategize on which actions to choose,
based also on their knowledge of the preferences of the other agents. In this
chapter, we will give a brief introduction to game theory, focusing on the tools
we will be using. This chapter is based on standard game theory literature
unless otherwise stated; we refer to [194] for more details. We assume familiarity
with set theory, algebra, and basic computational complexity theory.

Utility as a Numerical Quantity. The idea that utility can be measured as a
numerical quantity has its roots in utilitarianism, pioneered by philosophers
such as Bentham [27], Mill [188], and Edgeworth [98]. This reasoning has
since been a pillar of modern economics, though it has often been criticized
since for being impossible to measure or incomplete: a popular theory by
Kahnemann, Wakker, and Sarin [145] suggests distinguishing between ‘decision
utility’ and ‘experienced utility’, the former of which relates to the decisions an

25
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agent makes, while the latter corresponds to the experienced valence. Stigler
[234, 235] proposed the theory of marginal utility that, motivated by wanting
to predict actions, only seeks to model the change in utility that certain actions
would give. This solves the problem of having to measure the full depth of
the ‘sea’ of utility and instead focus on the ‘waves’ of the relative change in
utility, in reference to Georgescu-Roegen [110] using the ocean as a metaphor
for utility. Scholars such as Pareto [196] reject altogether the idea that utility
is cardinal, and instead suggests making do with ordinal utility, i.e. comparing
the preferences of agents. However, Von Neumann and Morgenstern [250] show
that under certain axioms on the rational behavior of an agent, the agent acts
as though they are maximizing a utility function. These axioms have been
criticized both by theoreticians and empiricists. A related theory by Savage
[217] gives a different set of seven axioms that are consistent with maximizing
subjective expected utility. In recent years, support for quantifying utility has
emerged also in consciousness research, e.g. by Johnson [143] who propose
a ‘symmetry theory of valence’ which posits that experienced utility relates
to the symmetry of the internal representation of an experience (that could
potentially be measured). Throughout the years, numerous alternative theories
to cardinal utility have been proposed [114, 220, 244]. Throughout this thesis,
we will take for granted that utility can be measured as a numerical quantity
and consider these alternative theories outside the scope of this thesis.

Definition 2.1 (Game). A game on n agents consists of n sets S1, S2, . . . , Sn
that comprise the set of strategies available to each agent. Elements of Si
correspond to deterministic (pure) strategies that agent i may choose. A (pure)
strategy profile s ∈ S := S1 × S2 × · · · × Sn specifies a strategy for each agent.
We assume the existence of a utility function,

u : S → Rn,

that for each set of pure strategy profile s ∈ S and for every i ∈ [n] gives the
(expected) utility ui(s) that agent i receives when playing the pure strategy
profile s.

In general, the strategies can be randomized (in which case they are usually
called mixed strategies) so we will, in fact, instead consider distributions on S,
i.e. a distribution on the pure strategies of each agent. We overload notation
and denote also by si a mixed strategy for agent i and trust it is clear that
we actually mean a distribution on Si. Also, unless otherwise stated, we will
assume that the strategies for each agent are independent. Correlated strategies
can be used to model cases where agents privately receive public information
from a correlation device [14, 15]. Such strategies can result in more efficient
outcomes than their uncorrelated counterparts: the canonical example of a
correlated equilibrium is that of traffic lights, where the suggested strategies
of ‘stop’ or ‘go’ prevent vehicles from colliding.
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Remark 2.2. We will consistently use the terminology agent to refer to the par-
ticipants of the game. In certain contexts, it might have been more appropriate
to use the term player or party: we have instead opted for homogenizing the
language and use the term agent regardless of the context.

Properties of Utility Functions.

It will often be convenient to make assumptions on the structure of the utility
function u. These assumptions serve mainly to simplify the analysis and in
most cases can be removed, at the cost of making the analysis less tractable
and the resulting theorems more complicated. As such, throughout most of
this thesis we will be assuming that all utility functions satisfy quasi-linearity
and risk neutrality, that we will elaborate on now.

Quasi-Linearity. The first property intuitively states that agents care about
money. More precisely, suppose an agent gets x utility from a certain outcome
(measured in terms of some base currency, the numéraire). Quasi-linearity
then means that if this outcome occurs and we pay the agent y money in said
currency, the utility of the agent is x+y. More formally, if an outcome consists
of a set of goods x1, x2, . . . , xn, the utility function u is said to be quasi-linear
in x1 if for every i, there is a function u′i such that,

ui(x1, x2, . . . , xn) = x1 + u′i(x2, x3, . . . , xn).

When we say we assume the agents have quasi-linear utilities, we implicitly
mean quasi-linearity in money, such that x1 is the net change in funds for
agent i. We stress that quasi-linearity of money is frequently contested by
economists, who might opt for other measurements such as log-utility [29],
or exponential utility [10]. Note that using different measurements does not
fundamentally change the analysis we will conduct as the utility can then be
considered quasi-linear in ‘log money’. However, it may change the payments
used in various theorems. We consider such modeling outside the scope of this
thesis.

Risk Neutrality. The second property states that an agent is indifferent
between obtaining two outcomes with the same expected utility. That is, if a
strategy profile S results in a probability distribution p on a set of outcomes
Ω, each of which x ∈ Ω gives a utility of ui,x to agent i, then we have that,

ui(S) =
∑
x∈Ω

p(x)ui,x.

Intuitively, such agents are indifferent to risk and would be equally happy
to receive 50€ or flip a coin for the chance to win 100€. It was argued by
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Bernoulli1 that humans are not risk neutral: consider a pool of money starting
at 2€ and an agent playing that repeatedly flips a fair coin. If the agent gets
heads, they are given whatever money is left in the pool, and whenever they
get tails, the pool doubles in size. In this case, the agent would receive 2€ with
probability 1

2 , 4€ with probability 1
4 , and so on. In this case, the expected

value of the game is,

1

2
· 2 + 1

4
· 4 + 1

8
· 8 + · · · = 1 + 1 + 1 + · · · =∞,

which diverges. This means that, under the expected utility theory, the agent
would be happy to pay any finite amount of money (say 1.000.000€) to play
this game. This does not seem realistic, and Bernoulli2 later writes that he
would not even pay 20€3 to play this game [29]. This game has since been
known as the St. Petersburg paradox. The usual way to resolve this alleged
paradox involves invoking the law of diminishing marginal utility, as suggested
by Bernoulli [30]. The idea is that the value of 1€ diminishes as you get more
money, i.e. there is some sublinear function f(·) such that the utility of having
ω is f(ω). A common choice is f(ω) = log(ω), known as log-utility. In this
case, the paradox disappears as now the expected utility of the game is a finite
number that depends on the precise choice of f(·). However, as pointed out by
Menger [186], the paradox can always be reintroduced by changing the game
such that the pool of money grows even faster. In any case, such solutions
explicitly reject our first assumption of quasi-linearity and are thus undesirable.
Other solutions involve taking the finite budget of the casino into account
[104], or discounting probabilities that are sufficiently small [82]. There are
other ways to solve the alleged paradox that involve rejecting the expected
utility theory altogether, most notably using prospect theory [144, 244], or
more recently, using ergodicity economics [199, 200]. However, we consider
such modeling outside the scope of this thesis.

2.1 The Nash Equilibrium

Ultimately, the reason to model games in formal mathematical language is
to use mathematics to predict how the agents will behave. Being rational,
agents will take actions that maximize their (expected) utility, subject also to
the preferences of the other agents. The key observation is that once we fix a
strategies of all agents, the situation is only ‘stable’ if none of the agents may
deviate to obtain a better outcome (or else they would). This leads us to the
most important definition in game theory.

1Nicolaus Bernoulli.
2Daniel Bernoulli, the cousin of Nicolaus Bernoulli.
3Bernoulli, of course, had no knowledge of euros; in his version of the game, the currency

was ducats, a coin made of 3.5g gold, worth about 200€ as of May 31, 2023.
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Definition 2.3 (Equilibrium, [191]). A strategy profile s∗ ∈ S is an equilibrium
for a game G, if for any i and any si, it holds that,

ui(s
∗
i , s

∗
−i) ≥ ui(si, s∗−i). (2.1)

If the inequality only holds with a ‘slack’, i.e. if for some constant ε > 0, it
holds that ui(s∗i , s∗−i) + ε ≥ ui(si, s∗−i), we say that s∗ is an ε-equilibrium. If
instead, for every si 6= s∗i , the above inequality is strict (i.e. > instead of ≥),
we say that s∗ is a strong equilibrium.

The equilibrium identifies those strategy profiles that are stable with respect
to unilateral deviations by the agents. Note that while the equilibrium is named
after Nash [191], it was first used by Cournot [71] to study the strategic behavior
of competing firms. The equilibrium is often considered the most basic property
a strategy profile must satisfy to be played by rational agents. However, there
are various relaxations of the notion of equilibrium that are in some sense
consistent with being rational, e.g. rationalizable strategies [28, 197]. In this
thesis, we are only interested in studying equilibria and various refinements
hereof.

Bounded Rationality. An implicit assumption of the equilibrium is that there
is full knowledge on the strategies chosen by other agents: an agent best-
responds to the full strategy profile chosen. In many cases, this is a limiting
assumption. To model uncertainty about the strategies of other agents, one may
instead use other notions such as (perfect) Bayesian Nash equilibria [63, 146],
or sequential equilibria [158], both of which assign a prior distribution on
each information set in the game, modeling the beliefs that the agent has. A
related and problematic aspect of the equilibrium is that rationality might be
a tall order: agents may not possess the required knowledge or computational
resources to realize full rationality. This phenomenon is well-documented in
behavioral game theory [6, 99] and can be modeled using e.g. trembling-hand
equilibria [225] or quantal response models [181, 182], both of which allow
agents to make irrational choices with non-zero probability.

Rationality and Cryptography. Rationality is also seemingly incompatible
with cryptographic assumptions. Suppose that a renegade computer scientist
has acquired a nuke that they have hid in an undisclosed location. In 72 hours,
the nuke detonates unless a proof of the Riemann hypothesis is uploaded to the
Ethereum blockchain. The scientist is credible and there is no way to find the
bomb in the allotted time. Clearly, the rational thing for the agent to do is to
simply upload a proof of the Riemann hypothesis. However, this is likely hard
to do unless the agent has infinite computing power (in which case they could
brute-force a proof). That is, being rational seems fundamentally at odds with
being computational bounded. While this example is a bit conceived, this
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is a real concern when modeling cryptographic primitives in the context of
rational agents: a fully rational agent would be able to trivially break any
non-information-theoretic cryptography. This is problem for our blockchain
setting where we crucially rely on e.g. the agents not being able to break
the underlying hash function (for proof-of-work). There are ways to model
such agents using computational extensive-form games proposed by Halpern,
Pass, and Seeman [131]: here, we have an ideal representation of a game as
an extensive-form game G, and consider a (non-uniform) infinite sequence
G(0),G(1),G(2), . . . of real games, one for each choice of security parameter
λ ∈ N. A strategy profile is a (non-uniform) sequence of strategy profiles
S(0), S(1), S(2), . . ., that we say is a computational equilibrium if there is a
negligible4 function negl(·) such that S(λ) is a negl(λ)-equilibrium. This means
we can make the incentive the cheat small by setting the security parameter to a
reasonable value. Halpern, Pass, and Seeman then give conditions under which
an equilibrium in G is also a computational equilibrium in G(0),G(1),G(2), . . .
(under an appropriate translation of the strategy profile). For the purposes of
this thesis, we will conveniently sweep such issues under the rug and assume
our underlying cryptographic primitives are secure and incorruptible.

Existence and Computation of Equilibria. Nash famously showed that every
game admits an equilibrium when the agents are allowed to randomize their
strategies [191]. His proof used Kakutani’s fixed-point theorem [147] and, as a
result, is non-constructive; a plethora of work in computer science has since
been devoted to studying the computational complexity of finding equilibria in
various models of games [42, 61, 69, 81, 115, 172, 203]. The consensus is that
finding equilibria is, in general, hard to do. Famously, Daskalakis, Goldberg,
and Papadimitriou [81] showed that finding an equilibrium in games with at
least three agents is complete for the complexity class PPAD[195]. Informally,
this means that finding an equilibrium is as hard as finding the end of an
exponentially long line, for which the best-known algorithm is to essentially
take every step [168]. This is clearly not efficient, and hence it is commonly
believed that finding equilibria is hard. This was reduced to two agents by Chen,
Deng, and Teng [61]. The same authors later showed that even approximating
an equilibrium is hard [62]. Note that the equilibrium of a game is, in general,
not unique [183], and in fact, it is known that finding a second equilibrium is
NP-hard. Determining if a game has a pure equilibrium is NP-hard [120], and
determining whether a game has a strong Nash equilibrium is ΣP

2 -complete
[120]. Finding an equilibrium can also be shown to be hard under various
cryptographic assumptions [34, 64]. For a survey of more hardness results on
finding equilibria, we refer to the book by Nisan, Roughgarden, Tardos, and

4Here, negligible is a standard cryptographic definition that means that the function
grows slower than any polynomial, i.e. f(·) is negligible if for any c ∈ R, it holds that
f(x) = o(xc). The prototypical example is the exponential function 2−x.
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Vazirani [192]. As a caveat, note that the word ‘efficient’ is used in the usual
computer science sense, meaning ‘computable in polynomial time in the size of
the instance’. In practice, chess and go are far too large to exhaust fully, even
if backward induction in principle takes linear time in the size of the games.
That is, efficiency describes the asymptotic relationship between the size of
the instance and the time it takes to solve it, as the size of the instance tends
to infinity — it says nothing about the time it takes to solve any concrete
instance. As a curiosity, chess has been solved when there are at most seven
pieces on the board [208], and as of 2023, work is ongoing to increase this
number to eight.

2.2 Representations of Games

Normal-Form Games

The classic formulation of a game by Von Neumann and Morgenstein [249] is
as a real-valued matrix. The game involves two agents that act simultaneously,
one of whom chooses a row of the matrix and the other of whom chooses a
column. This determines an entry of the matrix, the value of which defines
the utility given to the row agent, and also the utility taken from the column
agent. That is, the game is zero-sum, in the sense that the sum of all utilities
for every outcome is zero. Any two-agent zero-sum game be modeled in this
way, and includes most competitive interactions where one agent can ‘win’.
This includes chess, go, or rock-paper-scissors. In the case of the former two,
the resulting matrix is far too larger to write down explicitly, but we have
done so for rock-paper-scissors for the purpose of illustration, see Fig. 2.1.

0 -1 1

1 0 -1

-1 1 0

Figure 2.1: The game of rock-paper-scissors modeled as a matrix. The agents
act simultaneously, one of whom choose a row and the other chooses a column.
Here, 0 is a draw, -1 is a win for the column agent, and 1 is a win for the row
agent.

Von Neumann [245] famously showed that any finite, zero-sum, two-person
game has a mixed equilibrium that can be found efficiently using linear pro-
gramming. We define the value of the game as the expected utility for the
row agent at this equilibrium. In the case of rock-paper-scissors, we find that
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the value is zero and that the optimal strategy for each agent is to play each
hand with probability 1

3 . These zero-sum matrix games are a special case
of a more general formalism of games, known as normal-form games [250].
In the general case, we would have multiple arrays of matrices (tensors) of
utilities, one for each agent, that gives their payoff in each combination of
moves by the other agents, e.g. for general-sum two-agent games we would have
two payoff matrices. Two-agent normal-form games can be solved using the
Lemke-Howson algorithm [168] that pivots around the corners of a polytope
comprising the set of feasible solutions, in order to eventually arrive at the
equilibrium. The algorithm runs in exponential time in the worst case [218],
though it is quite efficient in practice [203]. At a high level, it works in much
the same manner as the simplex algorithm for solving linear programs [80]. In
this thesis, we shall not be using normal-form games and have thus omitted
their precise definition.

Extensive-Form Games

In this section, we present a different model of games, extensive-form games,
that will serve as our model of choice throughout the rest of this thesis.
Extensive-form games were first introduced by Kuhn [160] This model is
equivalent in some sense to the normal-form representation5. Namely, rather
than thinking of the game as a matrix, we imagine all games as trees (in the
computer science sense). The leaves correspond to outcomes and branches are
decisions that an agent has to make. All leaves of the tree are labeled with a
utility for each of the participants, and each branch of the tree is owned by
exactly one of the agents. The game is played by, starting at the root, letting
the agent who owns the current node choose one of its children to recurse into.
This process continues until we reach a leaf which terminates the game. Each
agent is then given the utility associated with them with the corresponding
leaf. To see rock-paper-scissors as an extensive-form game, see Fig. 2.2.

Definition 2.4 (Extensive-Form Game of Perfect Information). An extensive-
form game of perfect information consists of:

• A rooted tree T , the leaves of which are labeled with a utility for each
agent. We denote by L ⊆ T the set of leaves in T , and suppose some
arbitrary but fixed order on its elements, `1, `2, . . . `m.

• An n×m matrix U = (uij) ∈ Rn×m, called the utility matrix of G, that
for each agent Pi specifies how much utility uij they receive when the
game terminates in the leaf `j ∈ L.

5Any normal-form game can be converted to an extensive-form game of the same size.
The same holds in the opposite direction but incurs an exponential blow-up on the size of
the representation.
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1

2 2 2

•
(0, 0)

•
(−1, 1)

•
(1,−1)

•
(1,−1)

•
(0, 0)

•
(−1, 1)

•
(−1, 1)

•
(1,−1)

•
(0, 0)

Figure 2.2: Rock-paper-scissors as an extensive-form game. The game starts
with a move for agent 1 who chooses which hand to throw. For each choice of
hand, agent 2 has a subgame where they also choose their move. The leaves
encode which agent wins the game, with the first coordinate being the payoff to
agent 1 and the second coordinate the payoff to agent 2. The dashed rectangle
around the moves of agent 2 is an information set. It enforces that agent
2 cannot condition their move on which move agent 1 chose. This game is
equivalent to its normal-form representation in Fig. 2.1.

• A partition of size n on the nodes T \ L, with each set corresponding to
the nodes owned by a given agent.

Extensive-form games may be depicted as upside down trees whose branches
are labeled with the index of an agent, and correspond to the moves in the
game. The leafs are then labeled with a vector that assigns to each agent their
corresponding utility. The game is played, starting at the root, by recursively
letting the agent who owns the current node choose a child to descend into.
We stop when a leaf `j is reached, after which agent Pi is given uij utility. A
mapping si that dictates the moves an agent Pi makes is called a strategy for
that agent and is said to be pure if it is deterministic, and mixed otherwise.
A set of strategies s = (s1, s2, . . . , sn), one for each agent, is called a strategy
profile and defines a distribution on the set of leaves in the game. We overload
notation and let ui(s) denote the expected utility for agent Pi when playing the
strategy profile s. If C ⊆ {1, 2, . . . n} is a set of indices of agents, a coalition,
we denote by −C its complement so that we may write a strategy profile s as
s = (sC , s−C).

Moves by Nature. Occasionally in the literature, extensive-form games have
an additional component to their structure that models random selection:
rather than partitioning the set of branches into n sets, we partition it into
n+ 1 sets, with the new set corresponding to ‘moves by nature’ with nature
playing a fixed strategy of common knowledge (i.e. there is a fixed distribution
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on the children of each move by nature). Moves by nature are sometimes called
chance nodes. We have omitted this component from our definition, as our
assumption of risk-neutrality allows us to assume w.log. that the trees contain
no such chance nodes.

Bifurcating Trees. It will occasionally be convenient to assume that T is a
bifurcating tree, i.e. each branch has exactly two children. Note that this
is without loss of generality, as any generic T may be made bifurcating by
collapsing branches with only one child, and replacing branches with more than
two children by small binary trees, with all branches belonging to the same
agent. Doing so increases the size of the tree by at most a factor O(logm).

2.3 Subgame Perfection

A subgame of G is a subtree G′ ⊆ G that is transitively closed under the
‘is child of’-relation, i.e. whenever v ∈ G′ and w ∈ G is a child of v, then
w ∈ G′. Our definitions suffice for games of perfect information, where at
each step, an agent knows the actions taken by previous agents, though, more
generally, we may consider partitioning each set of nodes belonging to an agent
into information sets, the elements of which are sets of nodes that the agent
cannot tell apart. More formally, any agent must assign the same strategy to
all branches belonging to the same information set6. Also subgames cannot
cut through information sets, making it possible for a non-trivial game to
contain only itself as subgame. A game of perfect information is a special case
where all information sets are singletons. A game of perfect recall is a game in
which no two distinct nodes belonging to the same information set are related
transitively under ‘is child of’. In games of perfect recall, agents ‘remember’ all
actions they have previously taken in the game. In this thesis, we will mostly
be working with games of perfect information.

Empty Threats. While an equilibrium is some sense natural, sometimes
strange equilibria appear in games. Consider the following game, known as
the ultimatum game (Fig. 2.3). Here, two agents have to split some resource,
say a bundle of cash, in two; the first agent (the proposer) proposes a split,
e.g. a fair split or an unfair split, where say the second agent (the responder)
only receives 10% of the total value. The responder can then accept the offer
or reject it, in which case both agents receive nothing (maybe they burn the
money in rage). If the proposer makes a fair split, the responder is forced

6Technically speaking, we have eluded the precise definition of what it means for an
agent not to ‘tell apart’ two node. This is of no concern for defining the games used in this
thesis, though it technically makes some of the wording less precise. This can be fixed using
epistemic modal logic [159, 229], though we have omitted such a treatment in this thesis, as
we believe the less formal version suffices for our purposes.
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•
(0, 0)

•
(5, 5)

•
(0, 0)

•
(9, 1)

fair split unfair split

Figure 2.3: The ultimatum game as an extensive-form game. agent 1 either
proposes a fair or an unfair split to agent 2, who subsequently chooses whether
to accept or reject the offer. This game has three equilibria, though only one
of them does not involve empty threats, namely the unique subgame perfect
equilibrium which is denoted in bold edges.

to accept only the fair split (i.e. in the unfair split branch of the game, the
responder has to reject the unfair split), as otherwise the proposer would
deviate to propose an unfair split. This is the most equitable outcome for the
two parties.

However, there are other equilibria of the game: if instead, the proposer
makes an unfair split, the responder has to accept the unfair split, as otherwise
they receive nothing. However, in case they do so, they can arbitrarily accept
or reject the offer in the other branch without changing their utility. This
means there are three equilibria of the game. However, we will now argue that
one of these equilibria is more ‘natural’ in some sense. That is, the strategy
profile where the proposer suggests an unfair split and the responder accepts
only the unfair split, although it is an equilibrium, seems unnatural; clearly,
the responder would also accept the fair split on the off-chance the proposer
makes a fair split. In some sense, also the fair split is also unnatural, as the
proposer, having the first move of the game, obtains a strictly larger utility
by proposing an unfair split. The reason these games seem strange is that we
can identify sequences of moves that seem irrational. In other words, the two
strange equilibria are not equilibria in every subgame of the original game. If
an equilibrium remains an equilibrium in each subgame of the original game,
we say it is a subgame perfection equilibrium. We have thus identified a
subclass of equilibria with a stronger property, which is known in the literature
as a solution concept, specifically a refinement of the standard equilibrium. A
subgame perfect equilibrium (or simply, SPE) is known to exist for every game
with perfect recall [160].

Definition 2.5 (Subgame Perfect Equilibrium). A strategy profile s∗ is a subgame
perfect equilibrium (SPE) for a game G if it is an equilibrium for every subgame
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of G.

Backward Induction. There is a nice and simple algorithm to compute sub-
game perfect equilibria for games of perfect information known as backward
induction. In chess, the algorithm is also known as retrograde analysis [242].
The algorithm was first used by Cayley [57] to solve the secretary’s problem.
The idea is to reason ‘backwards’ from the end of the game to infer the ac-
tions of the agents. Consider some subgame belonging to agent i. In order
to determine what agent i will do, we may consider each choice available to
them, and rank them according to the utility offered to agent i in each of
them. To compute these values, agent i has to determine their payoff in each
of the corresponding subgame, and so runs the algorithm recursively. The
algorithm stops when it reaches a leaf, in which case it is output as the SPE.
The algorithm thus runs in time O(m) where m is the size of the tree. It will
often be convenient to assume each agent has a strict order on the outcomes
of the tree, i.e. their utilities are distinct. In this case, we say the game is in
generic form. A pseudo-code of this algorithm is depicted in Algorithm 1.

Data: Extensive-form game G.
Result: Dominating leaf u∗.
function BackwardInduction(G):

switch G :
case Leaf(u) :

return u

case Branch(i, G(1), G(2), . . . , G(k)) :
for j = 1 . . . k :

u(j) ← BackwardInduction(G(j))

j∗ ← arg maxj=1...k u(j)
i

return u(j∗)

Algorithm 1: Pseudo-code of backward induction. The algorithm computes
the subgame perfect equilibrium (specifically, it computes the utility vector
of the dominating leaf ) in an extensive-form game with perfect information.
For simplicity, we are assuming that the game is in generic form, so that
the choice of u∗ is unique; we can modify the algorithm to compute all
SPEs at the cost of an O(m) overhead in the computation.

Unexpected Hanging Paradox. Philosophers have since discuss the merits of
backward induction, in what is known as the unexpected hanging paradox [65].

A prisoner is told that he will be hung by the neck at noon some
weekday the following week. He is not told what day the execution
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will occur, but he is told it will come to him as a surprise. The
prisoner then reasons that it cannot happen on Friday, since this
will not come to him as a surprise. But if it does not occur on Friday,
then it also cannot be Thursday, since by Wednesday evening, he
would know his fate. He continues and concludes it also cannot be
on Tuesday, nor on Monday. The prisoner happily concludes that
he will not be executed and retires to his cell. Monday at noon,
the executioner knocks on his door – that was quite surprising.

While the story suggests an apparent limitation of backward induction, the
paradox results from the self-referential nature of the setup.

2.4 Multi-Lateral Deviations

In this section, we generalize the concept of equilibrium to account for deviations
by multiple agents. That is, the standard (Nash) equilibrium only takes
into deviations by a single agent. This is often inadequate for modeling
cryptographic scenarios where an adversary is usually assumed to control a
constant fraction of the agents. In such cases, the equilibrium is too weak
to guarantee that the adversary does not have an incentive to deviate. The
definition is by Abraham, Dolev, Gonen, and Halpern [1].

Definition 2.6 (t-Robust Equilibrium). Let G be an n-agent game with strategy
space S1 × S2 × · · · × Sn. A strategy profile s∗ = (s∗C , s

∗
−C) is said to be a

t-robust equilibrium if for every coalition C ⊆ [n] of size |C| ≤ t, and every
joint strategy sC ∈

∏
i∈C Si, and every i ∈ C, it holds that,

ui(s
∗
C , s

∗
−C) ≥ ui(sC , s∗−C).

This definition is essentially just the ‘natural’ extension of the (Nash) equi-
librium to multilateral deviations. It has a parameter t that controls the
threshold on the size of the coalition. The definition was motivated by secret
sharing with rational agents. Here, n agents each have a share of a secret
value. If t+ 1 agents pool their shares, they can learn the secret, while any
set of t agents has no information on the shares. Such schemes are known to
exist from various algebraic objects. When the agents are rational, it is not
clear, however, that an agent would want to contribute their share. Indeed,
Halpern and Teague [130] show that secret sharing is impossible in a model
where 1) agents strictly prefer learning the output, and 2) agents prefer that
as few other agents learn the secret. Halpern and Teague also show when
removing the second assumption, 1-robust secret sharing is possible using
a randomized mechanism. Later, Abraham, Dolev, Gonen, and Halpern [1]
show that secret sharing can be achieved with (t− 1)-robustness using also a
randomized mechanism.
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Game-Theoretic Security

We now define what we mean when we say a game is secure in a game-theoretic
sense. The following definition originates in [222], though the following is taken
(almost) verbatim from [223], with only minor changes to the prose. At the
least, security should mean the honest strategy profile is an equilibrium, though
this is likely not sufficient for some applications. The fact that the honest
strategy profile is an equilibrium does not mean it is the only equilibrium.
Namely, there might be several dishonest strategy profiles with the same
properties, and there is no compelling reason for agents to be honest when
given the choice not to. In fact, there might be reasons to be dishonest that
are not captured by the utilities of the game, say for revenge or out of spite.
To remedy this, we want to quantify how much utility agents lose by deviating
from the honest strategy profile, in effect measuring the cost of dishonesty. We
introduce a parameter ε ≥ 0 such that being dishonest results in the deviating
agents losing at least ε utility. A game with this property is considered secure
against ε-deviating rational agents. We give a definition that generalizes t-
robust subgame perfect equilibria for finite games of perfect information. Let
G be a fixed finite game with n agents. Let s∗ be the honest strategy profile,
and u∗ ∈ Rn the corresponding utility vector. We say a utility vector u ∈ Rn

is C-inducible in G for a coalition C if there is a strategy sC such that playing
s = (sC , s

∗
−C) terminates in a leaf ` labeled by u with non-zero probability.

Definition 2.7 (Game-Theoretic Security). Let G be a game, and s∗ an intended
strategy profile. We say G has ε-strong t-robust game-theoretic security if for
every subgame of G, and every C-inducible vector u 6= u∗ in that subgame with
|C| ≤ t, and every i ∈ C with si 6= s∗i , it holds that:

u∗
i ≥ ui + ε (2.2)

In other words, every coalition of ≤ t agents that deviates from s∗ at any point
in the game should lose at least ε utility for each member of the deviating agent.
We note that for finite games of perfect information, t-robust subgame perfect
equilibria are retained as a special case of this definition by letting ε = 0.

Throughout parts of this thesis, we will also refer to a strategy profile as simply
having ε-strong game-theoretic security (omitting the t-robustness), in which
case we implicitly let t = 1.



Chapter 3

Commerce

“When goods do not cross borders, soldiers will.”

Frederic Bastiat

A fundamental problem of electronic commerce is ensuring both
ends of the trade are upheld: an honest seller should always receive
payment, and an honest buyer should only pay if the seller was
honest. Traditionally, this is ensured by introducing a trusted

intermediary who holds the payment in escrow until the trade has completed,
after which it releases the funds to the seller. It typically requires the agents not
to be anonymous, to enable either agent to hold the other agent accountable
in case of fraudulent behavior, and potentially subject to legal repercussions.
This, in conjunction with reputation systems, has proved to be an effective
means to honest and efficient trading, as evidenced by the enormous market
cap of online marketplaces such as Amazon or Alibaba. However, this relies on
being able to trust the intermediary to behave honestly: while the intermediary
has a strong incentive to maintain a good reputation, this does not address the
fundamental issue from a cryptographic point of view. Besides obvious privacy
concerns, a central marketplace also has an incentive to engage in monopolistic
behavior, such as removal of competitors’ products or differential pricing based
on customer demographics to the extent that it remains undetected [133].

Recent years have seen the creation of darknet markets that take advantage
of cryptocurrency and mix networks to provide decentralized and somewhat
anonymous trade of goods and services. They arguably solve some issues
with central marketplaces, but in doing so, also enable black market/criminal
activity to remain relatively unchecked. The most infamous darknet market
was “Silk Road”, known for selling illicit goods such as drugs, weapons, and
fake passports. It operated from February 2011 until the authorities seized it
in October 2013, and the developer, Ross Ulbricht, sentenced to double life
imprisonment. But this is a rarity: because of the anonymous nature of the
markets, it is often difficult to prosecute individuals, and many convictions of

39
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buyers are based on circumstantial metadata such as credit card transactions
purchasing cryptocurrency of similar size. However, most darknet markets
remain inherently centralized, in that all data and escrowed funds are processed
directly by the market itself, essentially at its mercy. It requires buyers and
sellers to trust both the benevolence and competence of the market, a trust
which is at best misplaced and at worst disastrous in consequence. There are
many examples of prominent darknet markets being hacked, and all funds held
in escrow stolen, or of the operators of the market themselves performing an
exit scam, i.e. suddenly stealing the funds in escrow and subsequently closing
the market. It is often difficult, if not impossible, to recover the stolen funds
and hold anyone accountable [90].

In this chapter, we describe a system for facilitating electronic commerce
in a decentralized manner. We consider a seller who wants to sell an item to a
buyer using the blockchain as a trusted third agent. Specifically, we assume
both agents are rational and have shared access to a blockchain that allows
them to deploy smart contracts that can exchange and process cryptocurrency.
Our goal is to replace the trusted third agent with a smart contract, such
that agents can be trusted to complete their end of the trade. As the agents
are rational, we want to prove they maximize their utility by behaving as we
intend them to.

Attribution. The chapter is based on the paper [222], though most of the
text is taken from the full version [221] (including the introduction) with only
minor modifications (proof-reading and formatting). Contracts 3.1 and 3.3
and Fig. 3.1 were redrawn. In addition, few of the proofs have been rephrased
and rewritten.

Our Results

We propose a smart contract for the escrow of funds that enables any two
agents to engage in the trade of a physical good or service for cryptocurrency.
The contract relies on a dispute resolution system that is invoked only in the
case of a dispute. The purpose of the dispute resolution system is to distinguish
the honest agent from the dishonest agent. Either agent may issue a dispute
by making a “wager” of size λ that they will win the adjudication: the winner
is repaid their deposit as well as the funds held in escrow. We prove that both
buyer and seller are incentivized to behave honestly if and only if the dispute
resolution system is biased in favor of honest agents. Specifically, let γ be the
“error rate” of the dispute resolution system: then we show there is a value
of λ such that the contract has strong game-theoretic security if and only if
γ < 1

2 . This is not a particularity of our contract: we show this is inherent
to any contract that achieves game-theoretic security for interesting trades.
By instead considering a weaker notion of security where agents do not have
strict incentives to behave honestly, we can use a random coin flip protocol as
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the dispute resolution system that can be implemented under computational
assumptions with the use of Blum’s coin toss protocol.

The contract can be run on any blockchain that supports smart contracts
(such as Ethereum). As a result, many properties (anonymity, efficiency, etc.)
of the contract are inherited from the corresponding blockchain. We feature a
discussion of different ways to instantiate the smart contract. In particular,
the contract can be used in a manner that complies with current laws and
regulations by using a blockchain with revocable anonymity: an agent who
takes part in distributing illicit goods can be deanonymized by the courts,
while all other agents remain anonymous. This would allow for a kind of
certification or blueprint of marketplaces based on smart contracts even if they
are essentially anonymous, so long as the underlying blockchain uses revocable
anonymity.

Related Work

A variety of solutions have been proposed for replacing the trusted third
agent with a smart contract in so-called atomic swaps. Most academic work
has focused on digital goods, the delivery of which can be deterministically
determined under computational assumptions on the participating agents.

Dziembowski, Eckey, and Faust [96] propose a protocol, called FairSwap ,
with essentially optimal security: the goods are delivered to the buyer if and
only if the seller receives the money. Their solution relies on cryptography and
assumes the goods can be represented as a finite field element. As a result,
their protocol does not apply in any meaningful way to physical goods. It
seems unlikely we can achieve this notion of security for non-digital goods
due to a fundamental difference between the physical and the digital world.
Asgaonkar and Krishnamachari [11] propose a smart contract for the trade
of digital goods: both agents deposit funds a priori (a dual-deposit) which is
only refunded if the trade was successful. They prove that the honest strategy
is the unique subgame perfect equilibrium for sufficiently large deposits. Like
FairSwap, their solution only works for digital goods as it requires a hash
function to verify the delivery of the item. Witkowski, Seuken, and Parkes
[255] consider the setting of escrow in online auctions. Their idea is to pay
some of the buyers a rebate to offset their expected loss from engaging in a
transaction with the seller. Whether a buyer is paid a rebate depends on the
reports of other buyers. They prove that the seller has a strict incentive to
be honest, while the buyers are only weakly incentivized to do so. They show
that strict incentives for the buyers are possible if the escrow has distributional
knowledge about the variations in seller abilities, based on a peer prediction
method. Unfortunately, their solutions rely on a somewhat idealized setting in
which there are many buyers concurrently transacting with the same seller, as
otherwise buyers and/or sellers may have an incentive to collude, thus breaking
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security. Besides, it is not obvious how to apply their work to a non-auction
setting.

Outside academic circles, there are several proposed solutions, of which
the most promising are Kleros [169, 170] and OpenBazaar [8]. They are
both blockchain-based and as such provide some level of decentralization.
Unfortunately, the dispute resolution of OpenBazaar remains centralized in a
sense, since all moderation is done by an agreed-upon moderator, requiring
both buyer and seller to trust the moderator. From a cryptographic point-
of-view, this only serves to move the problem of having to trust the seller
to having to trust the moderator. The dispute resolution of Kleros is more
sophisticated, in that adjudication is done by a decentralized court where jurors
can opt-in on a case-by-case basis. Jurors who vote in accordance with the
majority decision are rewarded with money, while jurors who vote differently
are penalized. We will study this mechanism in more detail in Chapter 4.
Lesaege, George, and Ast [170] argue security by the use of focal points [219],
defined as the strategy people choose in the absence of communication: jurors
will act honestly because they expect other jurors to do so. Unfortunately, no
empirical study of Kleros has been published, so whether the focal point of
Kleros is “truth” remains conjecture at this point. Besides, neither system has
any formal analysis of correctness or security and thus fall short in rigorously
solving the buyer and seller’s dilemma. To the best knowledge of the author,
there is no “truly decentralized” market with game-theoretic security at the
time of writing.

3.1 The Basic Contract
In this section, we describe our contract for the trade of non-digital goods and
services. We consider a buyer B who wants to purchase an item it from a
seller S. The item can be a physical good or a service. The item is sold for a
price of x, and has a “perceived value” to the buyer of y > x, while the seller
perceives the value at x′ < x. From a game-theoretic point of view, we have
to assume y > x > x′, as otherwise neither buyer nor seller has incentive to
engage in the transaction. Before describing our contract, we first describe the
related contract by Asgaongkar and Krishnamachari. The contract assumes it
is a digital item, in the sense that it can be passed as input to a hash function
H(·).
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= y = x′

Figure 3.1: Workflow of the basic contract. The item it being sold by the seller
S to the buyer B for a price of x. The buyer has a perceived value of it of y,
while the seller has a perceived value of x′. Here, y > x > x′ > 0. The arbiter
A is only invoked in case of disputes.

Contract 3.1.

1. S makes public h← H(it) where H is a hash function, and deposits
λ money to the contract.

2. B deposits x+ λ money to the contract.

3. S either submits it to the contract, or submits it′ 6= ita.

4. B either accepts or rejects delivery of the item.

4.1. If B accepted, λ money is given to B and x+ λ money given
to S, and the contract terminates.

4.2. If B rejected, the contract recomputes H(it) and compares with
h.

4.2.1. If equal, it forwards x+ λ money to S.
4.2.2. If unequal, it forwards x+ λ money to B.

aAn alternative implementation involves encrypting it to keep it hidden from the
smart contract.

Theorem 3.2 (Asgaonkar, Krishnamachari [11]). For any ε ≥ 0, and any
sufficiently large λ > 0, Contract 3.1 has ε-strong game-theoretic security.



44 CHAPTER 3. COMMERCE

S
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•[
B : y − x
S : x

] •[
B : 0
S : −λ

]•[
B : −x− λ
S : x

]•[
B : y − x− λ
S : x

]

send not send

dispute accept disputeaccept

Figure 3.2: The commerce contract by Asgaongkar and Krishnamachari repre-
sented as an extensive-form game. First, the seller chooses whether or not to
send the item to the buyer. This action is then observed by the buyer who
chooses whether or not to accept delivery. If they reject delivery, they retain
their deposit only if the seller did not send the item. Otherwise, the seller
loses their deposit. The heavy edges denote the subgame perfect equilibrium
whenever λ > 0. In [11], the agents also have the option of submitting garbage
to the contract, however this is inconsequential to the analysis and has been
removed for brevity.

Non-Digital Commerce.

In the following, let us instead assume the item it is non-digital which means
it has to be shipped through a physical channel “off-chain” and thus eludes
Contract 3.1. See Fig. 3.1 for an illustration. By definition, no computer
program can rigorously determine whether or not it was physically delivered to
the buyer. This is a fundamental difference between the digital and the physical
world. We assume both agents have access to a blockchain, which for our
purposes is a shared data structure that allows both agents to deploy a smart
contract π that can maintain state, respond to queries, and transfer funds.
Unlike a human third agent, the smart contract can be guaranteed to behave
honestly due to the security of the underlying blockchain. For simplicity, we
assume the blockchain is secure and incorruptible, and consider only attacks
on the contract itself. For now, we assume transaction fees are negligible
compared to the items being transacted, such that they can be disregarded
entirely. We will dispense with this assumption later.

The contract is parameterized by a dispute resolution system A which
is a protocol invoked in case of disputes: its purpose is to distinguish the
honest agent from the dishonest agent. We denote by γ the error rate of the
dispute resolution system. In the case of digital goods, with computational
assumptions on the agents involved, cryptography allows us to get γ = 2−κ for
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any κ which has been exploited in previous work [11, 96]. In Chapter 4, we
show how to implement a dispute resolution system using rational agents that
interact with a blockchain.

The naïve solution is to invoke the dispute resolution system at every
transaction to determine whether or not the seller should be paid. However,
this is impractical because invoking the dispute resolution system is potentially
expensive; we desire a solution that only invokes the dispute resolution system
when necessary, a so-called ‘optimistic’ contract. We parameterize the contract
by a wager constant λ > 0. The contract proceeds as follows: both agents sign
a contract committing to making the trade, and B places x money in escrow.
S then delivers it to B “off-chain” who then notifies the smart contract to
transfer the funds in escrow to S, thus terminating the contract. If S does not
deliver it to B, then B can trigger a dispute by placing a “wager” of size λ
that they can convince the dispute resolution system that they were the honest
agent. If S does not respond (or forfeits), it is assumed it was not delivered to
B and the contract refunds x+ λ funds to B. However, a dishonest buyer may
trigger the dispute phase even when they received it. In this case, the honest
S may counter the wager by also placing a wager of size λ that they will win
the adjudication. Of course, a dishonest S may also counter the wager. If both
agents counter, the dispute resolution system is invoked and chooses a winner
among them. The winner is repaid x+ λ, while the loser receives nothing. We
can use the leftover λ to compensate the dispute resolution system for their
time. We handle crashing by having timeouts in the contract in a way that
favors the agent that did not crash; a buyer that crashes is assumed to have
received it. Likewise, a seller who fails to respond to a dispute is assumed to
forfeit. A full description of the contract is given in Contract 3.3.
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Contract 3.3.

1. B submits x money to the smart contract.

2. S sends it to B (off-chain).

3. B either accepts or rejects delivery, in which case they deposit λ
money.

3.1. If B accepts, x money is forwarded to S and the contract
terminates.

3.2. If B rejects, S can either forfeit or counter the dispute, in
which case they also deposit λ money.

3.2.1. If S forfeits, x+ λ money is returned to B.
3.2.2. If S disputs, the oracle is invoked. Whomever is deemed

honest by the oracle receives back x+ λ money.

Analysis of Contract

To analyze Contract 3.3 from a game-theoretic perspective, we consider it
as an extensive-form game and draw the corresponding game tree (seen in
Fig. 3.3). The payoff for each agent is defined as their expected change in
funds, where for simplicity we have explicitly omitted transaction fees. As an
example, consider a dispute between a dishonest buyer and an honest seller.
The buyer has earned y value since the seller was honest. The buyer may lose
the adjudication with probability 1 − γ, in which case they lose x + λ, for
an expected payoff of y − (x + λ)(1 − γ). Likewise, the seller receives their
payment of x with probability 1 − γ and loses λ with probability γ, for an
expected payoff of x (1 − γ) − λγ − x′. The other cases are similar and are
summarized in Fig. 3.3.

Theorem 3.4. There is a value of λ such that Contract 3.3 has ε-game-theoretic
security for some ε > 0 if and only if γ < 1

2 and ε ≤ x (1− 2γ).

Proof. We proceed using backwards induction in the game tree. We see that
the honest actions an ε larger payoff if and only if the following inequalities
are satisfied:

x (1− γ)− λγ − x′ − ε ≥ −x′ (3.1)
−ε ≥ xγ − λ (1− γ) (3.2)

y − x− ε ≥ y − (x+ λ)(1− γ) (3.3)
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S•[
B : y − x
S : x− x′

]

•[
B : y
S : −x′

] •[
B : yγ − (x+ λ)(1− γ)
S : x (1− γ) − λγ − x′

]

•[
B : −x
S : x

]

•[
B : −(x+ λ) γ
S : xγ − λ (1− γ)

] •[
B : 0
S : 0

]

send not send

dispute accept

forfeit counter

accept dispute
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Figure 3.3: Game tree of the smart contract after both agents have accepted
the transaction. The seller first chooses whether or not to send the item or
not which is observed by the buyer. The buyer can then accept delivery of
the item or stake money to raise a dispute. In this case, the seller is given the
option to forfeit, in which case all money held in escrow is repaid to the buyer,
or they can counter the dispute by also putting money at stake. In this case,
we invoke a dispute resolution system to determine who is the honest agent.
The honest strategy profile is denoted using bold edges.

Solving for λ, Eq. (3.1) gives λ ≤ x (1−γ)−ε
γ . By Eq. (3.2) we get λ ≥ xγ+ε

1−γ ,
while Eq. (3.3) is equivalent to Eq. (3.2). In summary, ε must satisfy:

xγ + ε

1− γ
≤ λ ≤ x (1− γ)− ε

γ

We must have γ < 1
2 since ε > 0, while the latter condition can be established

by solving for ε.

Corollary 3.5. Contract 3.3 has x (1 − 2γ)-strong game-theoretic security
whenever γ < 1

2 and λ = x.

3.2 The Generalized Contract

In this section, we consider a generalization of the previous contract that allows
us to obtain various tradeoffs between security and wager size. We show that
the bound of γ < 1

2 is inherent to any contract that achieves game-theoretic
security for ‘interesting trades’. We define an interesting trade as a trade where
agents have a net increase in utility if they are successful in cheating, compared
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to being honest. If a trade is not interesting, security is trivial. Intuitively,
this necessitates the use of some mechanism A that determines if an agent was
dishonest. A rational dishonest agent will never reveal themselves if they lose
utility by doing so, so A needs to be external to the agents in the protocol.
We call such a mechanism an dispute resolution system. We can assume the
dispute resolution system is only invoked if one of the agents were dishonest,
and we will assume A outputs a single bit determining whether a fixed agent
(say the seller) were the dishonest agent. If an agent is deemed dishonest by
the dispute resolution system, we say they are the ‘winner’; otherwise they are
the ‘loser’. We let γ be the error rate of A, i.e. the probability that the loser
were honest. Let ω, ` be functions such that the winner is paid ω money and
the loser is paid ` money. We have to assume that ω > ` such that winning is
preferred over losing. Now, consider a seller who has to decide whether or not
to counter a dispute from the buyer. Regardless of whether the seller is honest
or not, they have to decide whether to forfeit or counter. If the seller is honest
we want them to counter the dispute, i.e. ω (1− γ) + `γ > 0. If the seller is
dishonest we want them to forfeit, i.e. ωγ + ` (1− γ) < 0. That is,

ωγ + ` (1− γ) < ω (1− γ) + `γ.

Since we have ω > ` this can only be true for γ < 1
2 .

Affine Rebate Functions

In the following we let α be a constant such that the winner is paid back αλ
money. Naturally, we must have that α ≥ 0 as the winner cannot lose more
than they have wagered. Also, we must have α ≤ 2 to prevent the contract
from minting money. Note that the original contract is a special case where
α = 1.

Theorem 3.6. Contract 3.3 has (maximal) ε-strong game-theoretic security if
and only if γ < 1

2 and one of the following conditions are established:

1. α = 2; and λ ≥ xγ+ε
1−2γ .

2. 1
1−γ < α < 2; and ε ≥ x

(
1−2γ
2−α

)
; and λ ≥ xγ+ε

1−αγ .

3. α = 1
1−γ ; and ε = x (1− γ); and λ = x

(
1−γ
1−2γ

)
.

4. α < 1
1−γ ; and ε = x

(
1−2γ
2−α

)
; and λ = x

(
1

2−α

)
.

Proof. As in the proof of Theorem 3.4, we only need to consider a seller faced
with a dispute, as this implies the other cases. This leads to the following two
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inequalities:

(x+ αλ) (1− γ)− λ− ε ≥ 0 (3.4)
−ε ≥ (x+ αλ) γ − λ (3.5)

We now consider different values of α, choose the maximum permitted value of
ε to maximize security, and solve for λ. Note that we are intentionally leaving
out some cases where ε is small.

1. When α = 2, Eq. (3.5) gives a lower bound of λ ≥ xγ+ε
1−2γ , while as in the

proof for completeness Eq. (3.4) gives a trivial lower bound.

2. When 1
1−γ < α < 2, equations Eq. (3.4) and Eq. (3.5) give the following

lower bounds.

λ ≥ xγ + ε

1− αγ
, λ ≥ x (1− γ)− ε

1− α+ αγ
.

When ε ≥ x
(
1−2γ
2−α

)
the lower bound from Eq. (3.4) is strongest. Since

we choose the maximal value of ε, i.e. not ε < x
(
1−2γ
2−α

)
, this gives the

desired bound.

3. When α = 1
1−γ , Eq. (3.4) gives an upper bound on the security parameter

ε ≤ x(1− γ). Similarly, Eq. (3.5) gives a lower bound of λ ≥ (1−γ)(xγ+ε)
1−2γ .

Choosing the maximum ε = x (1− γ) and substituting gives the desired
result.

4. When α < 1
1−γ , Eq. (3.4) gives an upper bound of λ ≤ x (1−γ)−ε

1−α+αγ , while
Eq. (3.5) gives a lower bound of λ ≥ xγ+ε

1−αγ . This means there is a value
of λ such that ε-soundness is satisfied if and only if,

xγ + ε

1− αγ
≤ x (1− γ)− ε

1− α+ αγ
.

The maximal value of ε satisfying this equation is ε = x
(
1−2γ
2−α

)
which

solves to λ = x
2−α , showing the desired.

Tradeoffs

We now have a characterization of different ways of instantiating Contract 3.3,
allowing us to reason about the pros and cons of different choices of parameters.
We consider a few special cases: Suppose that, in addition to receiving their
own wager back, the winner also receives the loser’s wager, i.e. the generalized
contract with α = 2. By Theorem 3.6, we have no upper bound on ε, allowing
us to get arbitrarily high security by making the wager sufficiently large. The
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downside to this is that it results in larger wagers: suppose we let ε = x (1−2γ),
the maximum value in the old contract, then the new wager is:

λ =
xγ + x (1− 2γ)

1− 2γ
= x+

xγ

1− 2γ
> x

which is always larger than the old wager. This is natural in a sense: since we
expect to win back the wager by disputing, the wager needs to be larger to
offset the increased incentive to issue a false dispute.

Corollary 3.7. With a winner rebate of size λ, Contract 3.3 has ε-strong security
(for any ε > 0) whenever γ < 1

2 and λ = xγ+ε
1−2γ .

Instead, consider what happens if the wager is withheld even for the winning
agent, i.e. letting α = 0. This naturally requires λ < x since otherwise there
would be no incentive to dispute. We again refer to Theorem 3.6 which gives
the following result:

Corollary 3.8. When Contract 3.3 withholds all wagers, it has 1
2x (1−2γ)-strong

game-theoretic security when γ < 1
2 , and λ = 1

2x.

It is not hard to see (referring to Theorem 3.6) that this is the minimal value
of λ we can use if we want to maximize the security of the protocol. It seems
our construction requires λ = Ω(x). This is natural in a sense: if λ were a
constant, by increasing x, at some point, the expected utility from attempting
to cheat would outweigh the cost of losing the wager.

Invoking the dispute resolution system is not free. This is the very motiva-
tion behind our contract: if the dispute resolution system were free and better
than random, we could trivially invoke it in every purchase to determine who
should receive the money. However, this unfairly punishes honest agents by
requiring them to pay for an expensive and unnecessary adjudication. Worse
yet, invoking the arbiter at every interaction would result in false convictions
even when both agents are satisfied with the transaction. Still, we have to
compensate the dispute resolution system somehow. We can accomplish this by
varying α such that the left over funds equal the price of the adjudication. If P
is the price of the adjudication, we can accomplish this by letting α = 2−P/λ.
This works whenever P > 2λ such that the total wager exceeds the price
of paying for the adjudication. We may instantiate this in various ways by
referring to Theorem 3.6.

3.3 Practical Considerations

Transaction fees

Our analysis assumes transaction fees are negligible which is not the case in
practice. In this section, we consider adding transaction fees to our model
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and show that this incurs a loss of security which is additive in the size of the
transaction fee. Doing so in general is tricky business and is specific to the
implementation and the blockchain of choice. Instead, we adopt a simplified
approach where playing a move in the game tree has a unit cost of τ for some
τ > 0, the only exception being the default action in case of timeouts: an agent
can always time out to choose the default action at zero cost. For simplicity,
we let α = 1.

Lemma 3.9. With transaction fees of size τ , Contract 3.3 has ε-game-theoretic
security if and only if,

1. the adjudication is biased in favor of honest agents; and,

2. the transaction fee is bounded τ < x (1− γ)− λγ; and,

3. the item is of sufficient value, x− x′ > τ .

Proof. We proceed using backward induction in the game tree. It is not hard
to see we still need γ < 1

2 . Consider a seller faced with a dispute. When
they are dishonest their incentive to be honest is increased by τ , while the
converse is true when they are honest. This yields τ < x (1− γ)−λγ− ε. Now
consider a buyer. If they did receive the item, their incentive to accept has
only increased by τ . If they did not receive the item, their added cost of τ for
issuing a dispute must outweigh the size of the payment. This means we must
have x > τ . Finally, consider a seller deciding whether to send or not. If they
do not send they incur a cost of 0, while accepting gives x− x′ − τ > 0.

Corollary 3.10. With transaction fees of size τ , Contract 3.3 has [x (1−2γ)−τ ]-
strong game-theoretic security when λ = x and x− x′ > τ .

Denial-of-Service Attacks

We briefly consider malicious sellers that waste the buyer’s time and resources
by accepting a contract only for it to time out. When there are no transaction
fees, this attack is free to deploy and clearly imposes negative utility on the
buyer, since their funds are locked until the timeout passes. With transaction
fees, the attack is no longer free, though it is still fairly cheap for large purchases.
To circumvent this, we can force the seller to deposit to accept the contract.
The deposit is paid back when the contract is completed. In this way, the
seller can only mount the attack by suffering a similar utility loss as the buyer
which a rational seller would not do.

Coin Toss Adjudication

In this subsection, we consider the special case in which the output of the
dispute resolution system is independent of the evidence being submitted,
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i.e. γ = 1
2 . The advantage of this is that we can implement such a dispute

resolution system using a cryptographic protocol. However, we showed that
strong game-theoretic security is only possible when γ < 1

2 so we need to
relax our security definition. For this reason, we say that a protocol enjoys
weak game-theoretic security if the intended strategy profile is a subgame
perfect equilibrium. Note that while this guarantees that being honest is an
equilibrium strategy it does not provide a strict incentive to do so. However,
it remains secure in a strong sense against risk-averse agents which also means
it is strictly insecure against risk-seeking agents.

Theorem 3.11. Using a coin toss dispute resolution system, Contract 3.3 has
weak game-theoretic security for γ = 1

2 and λ = x.

Proof. For s∗ to be a subgame perfect equilibrium, there must be no s 6= s∗

that achieves a strictly larger payoff. As before, this can only be achieved
when:

x (1− γ)− λγ ≥ xγ − λ (1− γ) (3.6)

which solves to λ = x for γ = 1
2 .

We can implement the coin toss dispute resolution system using a variant of
Blum’s coin-flipping protocol [37, 77]. Suppose we have a commitment scheme,
and let commit be the commitment function. Then the adjudication proceeds
as follows:

1. S samples a random bit bS ∈R {0, 1}, and a random string r ∈R {0, 1}κ.

2. S computes C ← commit(b, r) and submits C to the smart contract.

3. B samples a random bit bB ∈R {0, 1} and submits it to the smart
contract.

4. S submits bS and r to the blockchain.

5. The smart contract verifies that bS , r is a valid opening of C: if not, let
b := 0. Otherwise let b := bS ⊕ bB.

6. The smart contract transfers x+λ to S if and only if b = 1, and transfers
x+ λ to B otherwise.

If at some point either agent times out, it is assumed they forfeited, and the
funds held in escrow are released to the other agent. Analysis of the protocol
is straightforward: the output is uniform, and security reduces to that of
the commitment scheme. From a cryptographic perspective, this protocol
is unsatisfactory because it does not satisfy fairness: S can choose not to
complete step 4 and simply abort the protocol without revealing the output
to B if they are dissatisfied with the result. However, this is not an issue for
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our application, since S loses the dispute by doing so. In general, it is hard
to achieve a fair coin flip on a blockchain: the best known protocol to date
samples Θ(n2) fair random values using an amortized O(logn) exponentiations
per value [56].





Chapter 4

Adjudication
“The opinion of 10,000 men is of no value if none of them
know anything about the subject.”

Marcus Aurelius (allegedly)

Juries are traditionally used in English common law to assess ev-
idence and provide a neutral judgment on the true state of the world
[253]. Historically, juries were composed of entrusted members of so-
ciety whose alleged virtuousness compelled them to vote impartially in

accordance with community norms [214]. The idea is that even if one juror
occasionally makes errors, collectively the jury tends to produce more correct
outcomes than either juror member would on their own [83]. In recent years,
there has been interest in developing these jury systems for use in distributed
computing to establish consensus on data whose validity inherently cannot be
verified by a computer [169, 170, 201]. The main complication is that Web3
typically assumes no trusted authorities and adjudication must therefore be
delegated to ordinary users (or agents), who are appointed as jurors and get
compensated for this activity. Such agents are largely anonymous and cannot
easily be held accountable for their actions [93]. They are largely indifferent to
the outcome of the adjudication case and typically strategize to maximize their
utility. As such, paying a fixed reward to the agents for their participation is
insufficient; they can then just vote randomly, without putting in any effort to
assess the case evidence, producing a useless adjudication outcome. Instead, to
produce a non-trivial adjudication, payments to/from the agents should be in
some way conditioned on their vote. Hopefully, if the agents are satisfied with
their payments, they will make a reasonable effort to assess the case evidence
and collectively come up with a correct adjudication.

In this chapter, we consider binary (yes/no) adjudication tasks and the
following simple mechanism. Each agent submits a vote with their opinion and
the adjudication outcome is decided using majority. Agents are rewarded for
voting in accordance with the final verdict and less so for voting otherwise (this

55
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approach is used in practice, e.g. in Kleros [169, 170] – it is a dispute resolution
system which is deployed on Ethereum and, at the time of writing, it has
allegedly settled more than one thousand disputes. We consider the problem
of incentivizing jurors to properly assess case evidence so that the resulting
adjudication is better than random. The problem is motivated by dispute
resolution in Web3 systems, where a reliable solution would find numerous
applications in, e.g., supply chain management, banking, and commerce, such
as the system we proposed in Chapter 3.

Attribution. This chapter (including introduction) is taken (almost) verbatim
from [54], with only minor modifications to the formatting and the prose.
Fig. 4.2 and the accompanying text is taken with no changes from the full
version [53] of the paper.

Our Contributions

Our main conceptual contribution is a new model for the behavior of strategic
agents. The model aims to capture the two important components of strategic
behavior while participating in an adjudication task. The first one is to decide
the effort the agent needs to exert to get sufficient understanding of the task
and form their opinion. The second one is whether they will cast this opinion
as their vote or they will vote for the opposite alternative. We assume that,
when dealing with an adjudication task, agents do not communicate with each
other. Instead, each of them has access to the outcome of similar tasks from
the past. An agent can compare these outcomes to their own reasoning for
them, which allows them to conclude whether their background knowledge is
positively correlated, negatively correlated, or uncorrelated to the votes cast
by the other agents. Payments can be used to amplify the agent’s incentive to
take such correlation into account. A strategic agent then acts as follows. If
there is a positive correlation, their opinion for the new adjudication task will
be cast as their vote. If the correlation is negative, they will cast the opposite
vote. If there is no correlation, the agent will vote randomly. We assume
that each adjudication task has a ground truth alternative that we wish to
recover. Agents are distinguished into well-informed and misinformed ones.
Well-informed (respectively, misinformed) agents are those whose opinions get
closer to (respectively, further away from) the ground truth with increased
effort. The ground truth is unobservable and, thus, the agents are not aware
of the category to which they belong.

After presenting the strategic agent model, we characterize the strategies
of the agents at equilibria of the induced game. We use this characterization
to identify a sufficient condition for payments so that equilibria are simple, in
the sense that the agents either vote randomly or they are all biased towards
the same alternative. Next, we focus on a simple scenario with a population of
well-informed and misinformed agents with complementary effort functions and
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show how to efficiently find payments that result in adjudication that recovers
the ground truth with a given probability. Finally, we conduct experiments
to justify that strategic play of a population with a majority of well-informed
agents results in correct adjudication when payments are set appropriately.

Related Work

Voting, the main tool we use for adjudication, has received enormous attention
in the social choice theory literature — originating with the seminal work
of Arrow [9] — and its recent computational treatment [43]. However, the
main assumption here is that agents have preferences about the alternatives
and thus an interest in the voting outcome, in contrast to our case where
agents’ interest for the final outcome depends only on whether this gives them
compensation or not. Strategic voter behavior is well-known to alter the
intended outcome of all voting rules besides two-alternative majority voting
and dictatorships [113, 216]. Positive results are possible with the less popular
approach of introducing payments to the voting process; e.g., see [205].

The assumption for a ground truth alternative has been also inspired by
voting theory [55, 70, 262]. In a quite popular approach, votes are considered as
noisy estimates of an underlying ground truth; typically, agents tend to inherit
the preferences in the ground truth more often than the opposite ones. Our
assumption for a majority of well-informed agents is in accordance with this.
However, an important feature here is that the ground truth is unobservable.
This is a typical assumption in the area of peer prediction mechanisms for
unverifiable information (see [101], Chapter 3), where a set of agents are used
to decide the quality of data. However, that line of work has a mechanism
design flavor and assumes compensations to the agents so that their evaluation
of the available data is truthful (e.g., see [256]). This is significantly different
from our modeling assumptions here. In particular, any evaluation of the
quality of the agents — a task that is usually part of crowdsourcing systems;
e.g., see [226] — is in our case infeasible. Still, our payment optimization is
similar in spirit to automated mechanism design [215] but, instead of aiming
for truthful agent behavior, we have a particular equilibrium as a target.

Recent work by Michelini, Haret, and Grossi [187] also considers a model
where jurors can exert varying effort to obtain better or worse signals. They
relate the effort exerted by an agent to their interest in producing a correct
outcome and find that only when the agents care sufficiently about the outcome,
the equilibrium produces a correct outcome with high probability. This is
significantly different from our model where the agents are assumed to be
indifferent to the outcome and are instead motivated by the payments they
receive.
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4.1 Modeling Assumptions

We assume that adjudication tasks with two alternatives are outsourced to n
agents. We use the integers in [n] = {1, 2, ..., n} to identify the agents. For
an adjudication task, each agent casts a vote for one of the alternatives and
the majority of votes defines the adjudication outcome. In the case of a tie,
an outcome is sampled uniformly at random. To motivate voting, payments
are used. A payment function p : [0, 1] → R indicates that agent i gets a
payment of p(x) when the total fraction of agents casting the same vote as i is
x. Payments can be positive or negative (corresponding to monetary transfers
to and from the agents, respectively).

The objective of an adjudication task is to recover the underlying ground
truth. We denote by T the ground truth and by F the other alternative. We
use the terms T -vote and F -vote to refer to a vote for alternative T and F ,
respectively. To decide which vote to cast, agents put an effort to understand
the adjudication case and get a signal of whether the correct adjudication
outcome is T or F . We partition the agents into two categories, depending
on whether their background knowledge is sufficient so that the quality of
the signal they receive increases with extra effort (well-informed agents) or
worsens (misinformed agents). Each agent i is associated with an effort function
fi : R≥0 → [0, 1] which relates the quality of the signal received by an agent
with the effort they exert as follows: the signal agent i gets when they exert an
effort x ≥ 0 is for the ground truth alternative T with probability fi(x) and
for alternative F with probability 1− fi(x). We assume that effort functions
are continuously differentiable and have fi(0) = 1/2. The effort function for
a well-informed agent i is strictly increasing and strictly concave. The effort
function for a misinformed agent is strictly decreasing and strictly convex.
The functions fi(x) = 1− e−x

2 and fi(x) =
e−x

2 are typical examples of effort
functions for a well-informed and a misinformed agent, respectively.

Agents are rational. They are involved in a strategic game where they
aim to maximize their utility, consisting only of the payment they receive
minus the effort they exert. In particular, we assume the agents are entirely
indifferent to the outcome. This may lead to voting differently than what their
signal indicates. We denote by (λi, βi) the strategy of agent i, where λi is the
effort put and βi is the probability of casting a vote that is identical to the
signal received (and, thus, the agent casts a vote for the opposite alternative
with probability 1− βi). The utility of an agent is quasi-linear, i.e., equal to
the amount of payments received minus the effort exerted. We assume that
agents are risk neutral and thus aim to maximize the expectation of their
utility. Denote by mi the random variable indicating the number of agents
different than i who cast a T -vote. Clearly, mi depends on the strategies of all
agents besides i but, for simplicity, we have removed this dependency from our
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notation. Now, the expected utility of agent i when using strategy (λi, βi) is

E[ui(λi, βi,mi)]

= −λi + fi(λi)βi · E
[
p

(
1 +mi

n

)]
+ (1− fi(λi))βi · E

[
p

(
n−mi

n

)]
+ fi(λi)(1− βi) · E

[
p

(
n−mi

n

)]
+ (1− fi(λi))(1− βi) · E

[
p

(
1 +mi

n

)]
= −λi + E

[
p

(
1 +mi

n

)]
+ (βi(2fi(λi)− 1)− fi(λi)) ·Q(mi). (4.1)

The quantities p
(
1+mi

n

)
and p

(
n−mi

n

)
are the payments agent i receives when

they votes for alternatives T and F , respectively. The four positive terms in
the RHS of the first equality above are the expected payments for the four
cases defined depending on the signal received and whether it is cast as a vote
or not. In the second equality, we have used the abbreviation

Q(mi) = E
[
p

(
1 +mi

n

)
− p

(
n−mi

n

)]
,

which we also use extensively in the following. Intuitively, given the strategies
of the other agents, Q(mi) is the additional expected payment agent i gets
when casting a T -vote compared to an F -vote.

We say that a set of strategies, in which agent i ∈ [n] uses strategy (λi, βi),
is an equilibrium in the strategic game induced, if no agent can increase their
utility by unilaterally changing their strategy. In other words, the quantity
E[ui(x, y,mi)] is maximized with respect to x and y by setting x = λi and
y = βi for i ∈ [n].

4.2 Equilibrium Analysis

We are now ready to characterize equilibria. We remark that cases (a), (b),
and (c) of Lemma 4.1 correspond to the informal terms no correlation, positive
correlation, and negative correlation used in the introductory section.

Lemma 4.1 (equilibrium conditions). The strategy of agent i at equilibrium is
as follows:

(a) If |f ′i(0) ·Q(mi)| ≤ 1, then λi = 0 and βi can have any value in [0, 1].

(b) If f ′i(0) ·Q(mi) > 1, then λi is positive and such that f ′i(λi) ·Q(mi) = 1
and βi = 1.

(c) If f ′i(0)·Q(mi) < −1, then λi is positive and such that f ′i(λi)·Q(mi) = −1
and βi = 0.
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Proof. First, observe that when agent i selects λi = 0, their expected utility is

E(ui(0, βi,mi)] = E
[
p

(
1 +mi

n

)]
− 1

2
Q(mi),

i.e., it is independent of βi. So, βi can take any value in [0, 1] when λi = 0.
In case (b), we have f ′i(0) ·Q(mi) > 0 which, by the definition of the effort

function fi, implies that (2fi(λi) − 1) ·Q(mi) > 0 for λi > 0. By inspecting
the dependence of expected utility on βi at the RHS of Eq. (4.1), we get that if
agent i selects λi > 0, they must also select βi = 1 to maximize their expected
utility in this case. Similarly, in case (c), we have f ′i(0) · Q(mi) < 0 which
implies that (2fi(λi)− 1) ·Q(mi) < 0 for λi > 0. In this case, if agent i selects
λi > 0, they will also select βi = 0 to maximize their expected utility.

So, in the following, it suffices to reason only about the value of λi. Let

∆i(λi) =
∂E[ui(λi, βi,mi)]

∂λi
= −1 + (2βi − 1)f ′(λi) ·Q(mi) (4.2)

denote the derivative of the expected utility of agent i with respect to λi. In
case (a), by the strict concavity/convexity of the effort function fi we have
|f ′i(λi) ·Q(mi)| < 1 for λi > 0 and

∆i(λi) = −1 + (2βi − 1)f ′i(λi) ·Q(mi)

≤ −1 + |2βi − 1| · |f ′i(λi) ·Q(mi)| < 0.

Hence, the expected utility of agent i strictly decreases with λi > 0 and the
best strategy for agent i is to set λi = 0.

Otherwise, in cases (b) and (c), the derivative ∆i(λi) has strictly positive
values for λi arbitrarily close to 0 (this follows by the facts that f is strictly
convex/concave and continuously differentiable), while it is clearly negative as
λi approaches infinity (where the derivative of f approaches 0). Hence, the
value of λi selected by agent i at equilibrium is one that nullifies the RHS of
Eq. (4.2), i.e., such that f ′i(λi)·Q(mi) = 1 in case (b) and f ′i(λi)·Q(mi) = −1 in
case (c). Recall that βi is equal to 1 and 0 in these two cases, respectively.

Using Lemma 4.1, we can now identify some properties about the structure
of equilibria.

Lemma 4.2. For any payment function, no effort by all agents (i.e., λi = 0 for
i ∈ [n]) is an equilibrium.

Proof. Notice that, when no agent puts any effort, each vote selects one
of the two alternatives equiprobably. Then, the probability that mi takes
a value t ∈ {0, 1, ..., n − 1} is equal to the probability that it takes value
n − 1 − t. Hence, E

[
p
(
1+mi

n

)]
= E

[
p
(
n−mi

n

)]
and Q(mi) = 0. Hence, all

agents’ strategies satisfy the condition of case (a) of Lemma 4.1 and, thus,
λi = 0 is the best response for each agent i.
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We will use the term non-trivial for equilibria having at least one agent
putting some effort.

The next lemma reveals the challenge of adjudication in our strategic
environment. It essentially states that for every equilibrium that yields probably
correct adjudication, there is an equilibrium that yields probably incorrect
adjudication with the same probability.

Lemma 4.3. For any payment function, if the set of strategies (λi, βi)i∈[n] is
an equilibrium, so is the set of strategies (λi, 1− βi)i∈[n].

Proof. With a slight abuse of notation, we reserve the notation mi for the
initial equilibrium where agent i follows strategy (λi, βi)i∈[n] and denote by m′

i

the random variable indicating the number of agents different than i who cast
a T -vote in the state where agent i follows strategy (λi, 1 − βi)i∈[n]. Notice
that, due to symmetry, the probability that mi gets a given value t is equal to
the probability that m′

i gets the value n− 1− t. Hence,

E
[
p

(
1 +m′

i

n

)]
= E

[
p

(
n−mi

n

)]
and E

[
p

(
n−m′

i

n

)]
= E

[
p

(
1 +mi

n

)]
.

Thus, Q(mi) = −Q(m′
i), hence f ′i(0) ·Q(mi) = −f ′i(0) ·Q(m′

i). By Lemma 4.1,
we have that the strategies of all agents in the new state are consistent with
the equilibrium conditions of Lemma 4.1, provided that the initial state is an
equilibrium (and thus satisfies the conditions).

We say that an equilibrium is simple if there exists an alternative a ∈ {T, F}
such that all agents cast a vote for alternative a with probability at least 1/2.
Intuitively, this makes prediction of the agents’ behavior at equilibrium easy.
Together with Lemma 4.1, this definition implies that, in a simple equilibrium,
an agent putting no effort (i.e., λi = 0) can use any strategy βi. For agents
putting some effort, a well-informed agent uses βi = 1 if a = T and βi = 0 if
a = F and a misinformed agent uses βi = 0 if a = T and βi = 1 if a = T .

Lemma 4.4 (simple equilibrium condition). When the payment function p
satisfies,

p

(
2 +m

n

)
− p

(
1 +m

n

)
+ p

(
n−m
n

)
− p

(
n−m− 1

n

)
≥ 0, (4.3)

for every m ∈ {0, 1, ..., n− 2}, all equilibria are simple.
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Proof. For the sake of contradiction, let us assume that the payment function
p satisfies the condition of the lemma but, at some equilibrium, agents 1 and 2
cast a T -vote with probability higher than 1/2 and lower than 1/2, respectively.
Clearly, the equilibrium strategies of agents 1 and 2 cannot belong to case (a)
of Lemma 4.1 as the probability of casting a T -vote would be exactly 1/2 in
that case.

We first focus on agent 1 and distinguish between two cases. If their strategy
is β1 = 1, then it belongs to case (b) of Lemma 4.1 and, thus, f ′1(0) ·Q(m1) > 1.
Furthermore, the probability of casting a T -vote is f1(λ). Hence, f1(λ) > 1/2,
implying that agent 1 is well-informed with f ′1(0) > 0. By the inequality above,
we conclude that Q(m1) > 0. If instead, agent 1’s strategy is β1 = 0, then it
belongs to case (c) of Lemma 4.1 and, thus, f ′1(0) ·Q(m1) < 1. The probability
of casting a T -vote is now 1−f1(λ). Hence, f1(λ) < 1/2, implying that agent 1
is misinformed with f ′1(0) < 0. By the inequality involving Q(m1), we conclude
that Q(m1) > 0 again.

Applying the same reasoning for agent 2, we can show that Q(m2) < 0.
Hence,

Q(m1)−Q(m2) > 0. (4.4)

Denote by X1 and X2 the random variables indicating that agents 1 and 2
cast a T -vote and by m the number of T -votes by agents different than 1 and
2. Let δi = Pr[Xi = 1]. For i ∈ {1, 2}, we have

Q(m3−i) = E
[
p

(
1 +m+Xi

n

)
− p

(
n−m−Xi

n

)]
= δi · E

[
p

(
2 +m

n

)
− p

(
n−m− 1

n

)]
+ (1− δi) · E

[
p

(
1 +m

n

)
− p

(
n−m
n

)]
= Q(m) + δi (Q(m+ 1)−Q(m)) . (4.5)

Hence, from Eqs. (4.4) and (4.5) we obtain that

(Q(m+ 1)−Q(m)) · (δ2 − δ1) > 0. (4.6)

Notice that the assumption on p implies that

Q(m+ 1)−Q(m)

= E
[
p

(
2 +m

n

)
− p

(
n−m− 1

n

)]
− E

[
p

(
1 +m

n

)
− p

(
n−m
n

)]
≥ 0,

while our assumption on the probability of casting a T -vote implies δ1 >
1/2 > δ2. These last two inequalities contradict Eq. (4.6) and the proof is
complete.
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It can be verified that the payment function

p(x) =

{
ω
xn , x ≥ 1/2

− `
xn , x < 1/2

with ω ≤ ` satisfies the condition of Lemma 4.4. We refer to this function
as the award/loss sharing payment function. Essentially, the agents with the
majority vote share an award of ω while the ones in minority share a loss of `.
Note that for ω = `, the payment function is strictly budget balanced unless all
votes are unanimous. This is similar to the payment function used in Kleros.
A sufficient condition for simple equilibria which is quite broad but does not
include Kleros’ payments is the following.

Corollary 4.5. When the payment functions are monotone non-decreasing, all
equilibria are simple.

4.3 Selecting Payments for Correct Adjudication

We now focus on the simple scenario in which some of the n agents are well-
informed and have the same effort function f and the rest are misinformed
and have the effort function 1− f . Can we motivate an expected x-fraction of
them vote for the ground truth?

Of course, we are interested in values of x that are higher than 1/2. This
goal is directly related to asking for a high probability of correct adjudication.
Indeed, as the agents cast their votes independently, the realized number
of T -votes is sharply concentrated around their expectation and thus the
probability of incorrect adjudication is exponentially small in terms of the
number of agents n and the quantity (x− 1/2)2. This can be proved formally
by a simple application of well-known concentration bounds, e.g., Hoeffding’s
inequality [136].

So, our aim here is to define appropriate payment functions so that a set of
strategies leading to an expected x-fraction of T -votes is an equilibrium. We
will restrict our attention to payments satisfying the condition of Lemma 4.4;
then, we know that all equilibria are simple. We will furthermore show that
all equilibria are symmetric, in the sense that all agents cast a T -vote with the
same probability. This means that there are λ > 0 and β ∈ {0, 1} so that all
well-informed agents use strategy (λ, β) and all misinformed agents use the
strategy (λ, 1− β).

Lemma 4.6. Consider the scenario with n agents, among which the well-
informed agents use the same effort function f and the misinformed agents
use the effort function 1− f . If the payment function p satisfies the condition
of Lemma 4.4, then all equilibria are symmetric.
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Proof. For the sake of contradiction, assume that non-symmetric equilibria
exist. Then, by Lemma 4.3, there exists an equilibrium, in which the agent i
putting the highest effort λi > 0 is either well-informed and follows the strategy
(λi, 1) or misinformed and follows the strategy (λi, 0), casting a T -vote with
probability f(λi) > 1/2. Let j be another agent using strategy (λj , βj) with
λj < λi. Since agent i casts a T -vote with probability higher than 1/2, agent
j is either well-informed and uses βj = 1 or misinformed and uses βj = 0;
in any other case, they would cast a T -vote with probability less than 1/2,
contradicting the simplicity of equilibria from Lemma 4.4. In both cases, the
probability of casting a T -vote is,

f(λj) < f(λi). (4.7)

Now, denote by m the random variable indicating the number of agents different
than i and j who cast a T -vote. Then, it is mi = m+ 1 with probability f(λj)
and mi = m with probability 1− f(λj). Thus, by the definition of Q, we get,

Q(mi) = E
[
p

(
2 +m

n

)]
· f(λj) + E

[
p

(
1 +m

n

)]
· (1− f(λj))

− E
[
p

(
n−m− 1

n

)]
· f(λj)− E

[
p

(
n−m
n

)]
· (1− f(λj))

= Q(m)

+ f(λj) · E
[
p

(
2 +m

n

)
− p

(
1 +m

n

)
+ p

(
n−m
n

)
− p

(
n−m− 1

n

)]
,

(4.8)

and an analogous equality for Q(mj). Since, by Lemma 4.4, the expectation is
non-negative, Eq. (4.7) implies that,

Q(mi) ≤ Q(mj). (4.9)

Now, by the equilibrium condition for agent i, we have f ′(λi) · Q(mi) = 1
(notice that this condition holds, no matter whether agent i is well-informed
or misinformed) and, hence,

Q(mi) > 0. (4.10)

By the strict concavity of the effort function f and since λj < λi, we also have
that

f ′(λi) < f ′(λj). (4.11)

Using the equilibrium condition for agent j (again, this holds no matter whether
agent j is well-informed or misinformed) and Eqs. (4.9) to (4.11), we obtain,

f ′(λi) ·Q(mi) < f ′(λj) ·Q(mj) ≤ f ′(λj) ·Q(mj) = 1,

which contradicts the equilibrium condition for agent i.
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Lemma 4.6 implies that, for x > 1/2, an equilibrium with an expected
x-fraction of T -votes has each agent casting a T -vote with probability f(λ) = x;
the well-informed agents use the strategy (λ, 1) and the misinformed agents
use the strategy (λ, 0). As agents vote independently, the random variables
mi follow the same binomial distribution Bin(n− 1, x) with n− 1 trials, each
having success probability x. Also, notice that the fact that the effort function
is strictly monotone implies that λ is uniquely defined from x as λ = f−1(x).

We now aim to solve the optimization task of selecting a payment function p
which satisfies the conditions of Lemma 4.4, induces as equilibrium the strategy
(λ, 1) for well-informed agents and the strategy (λ, 0) for misinformed agents,
ensures non-negative expected utility for all agents (individual rationality), and
minimizes the expected amount given to the agents as payment. As all agents
cast a T -vote with the same probability and the quantities mi are identically
distributed for different is, it suffices to minimize the expected payment

x · E
[
p

(
1 +mi

n

)]
+ (1− x) · E

[
p

(
n−mi

n

)]
(4.12)

of a single agent. By the definition of expected utility in Eq. (4.1), restricting
this quantity to values at least as high as f−1(x) gives the individual rationality
constraints for all agents. Furthermore, by Lemma 4.1, the equation,

f ′(f−1(x)) ·Q(mi) = 1, (4.13)

gives the equilibrium condition for both well-informed and misinformed agents.
We can solve the optimization task above using linear programming. Our

LP has the payment parameters p(1/n), p(2/n), ..., p(1) as variables. The
linear inequalities (Eq. (4.3)) for m ∈ {0, 1, ..., n − 2} form the first set of
constraints, restricting the search to payment functions satisfying the condi-
tions of Lemma 4.4. Crucially, observe that the quantities E

[
p
(
1+mi

n

)]
and

E
[
p
(
n−mi

n

)]
and, subsequently, Q(mi), can be expressed as linear functions of

the payment parameters. Indeed, for t = 0, 1, ..., n− 1, let z(t) = Pr[mi = t]
be the known probabilities of the binomial distribution Bin(n− 1, x). Clearly,

E
[
p

(
1 +mi

n

)]
=

n−1∑
t=0

z(t) · p
(
1 + t

n

)
,

and,

E
[
p

(
n−mi

n

)]
=

n−1∑
t=0

z(t) · p
(
n− t
n

)
.

Thus, the objective function (Eq. (4.12)), the individual rationality constraint,
and the equilibrium condition constraint can be expressed as linear functions
of the LP variables. Overall, the LP has n variables and n + 1 constraints
(n inequalities and one equality). The next statement summarizes the above
discussion.
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Figure 4.1: Minimal payment functions that ensure the existence of a simple
equilibrium with an x-fraction of the agents casting a T -vote on average, so
that all agents have non-negative expected utility. The scenario uses n = 100
and the effort function f(x) = 1− e−x

2 . The payment functions obtained by
solving the linear program from Theorem 4.7 for x ∈ {0.51, 0.6, 0.75, 0.99}
are shown. Each point (x, y) on a curve means that an agent will receive a
payment of y if an x-fraction of the agents voted in the same way as they did.
There is a marker for every fifth data point.

Theorem 4.7. Consider the scenario with n agents, among which the well-
informed ones have the same effort function f and the misinformed ones have
the same effort function 1 − f . Given x ∈ (1/2, 1), selecting the payment
function that satisfies the conditions of Lemma 4.4, induces an equilibrium in
which all agents have non-negative expected utility and an expected x-fraction of
agents casts a T -vote so that the expected amount given to the agents as payment
is minimized, can be done in time polynomial in n using linear programming.

Our approach can be extended to include additional constraints (e.g., non-
negativity or monotonicity of payments), provided they can be expressed as
linear constraints of the payment parameters. Fig. 4.1 depicts four payment
solutions obtained by solving the above LP for n = 100 and the effort function
f(x) = 1− e−x

2 , and values of x ranging from 51% to 99%.

4.4 Computational Experiments
Our goal in this section is to justify that appropriate selection of the payment
parameters can lead to correct adjudication in practice, even though Lemma 4.3
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shows the co-existence of both good and bad equilibria. The key property that
favors good equilibria more often is that, in practice, jurors are on average
closer to being well-informed than misinformed. Formally, this means that
1
n ·
∑

i∈[n] fi(x) > 1/2 for every x > 0.
Due to the lack of initial feedback, it is natural to assume that agents start

their interaction by putting in some small effort and convert their signal to a
vote. We claim that this, together with their tendency to be well-informed, is
enough to lead to probably correct adjudication despite strategic behavior. We
provide evidence for this claim through the following experiment implementing
the scenario we considered in Section 4.3.

We have n agents, a ρ-fraction of whom are well-informed and the rest
are misinformed. Agent i’s effort function is fi(x) = 1− e−x

2 if they are well-
informed and fi(x) =

e−x

2 if they are misinformed. We consider the minimal
payment functions, defined as the solution of the linear program detailed in
the last section, parameterized by the fraction x of agents intended to vote
for the ground truth. A small subset of these payment functions can be seen
in Fig. 4.1. In addition, we consider two different payment functions, both
defined using a parameter ω > 0:

• p(x) = ω if x ≥ 1/2 and p(x) = 0, otherwise.

• p(x) = ω
xn if x ≥ 1/2 and p(x) = − ω

xn , otherwise.

With the first payment function, each agent gets a payment of ω if their vote
is in the majority, while they get no payment otherwise. With the second
payment, the agents in the majority share an award of ω, while the agents in
the minority share a loss of ω. Notice that both payment functions satisfy the
conditions of Lemma 4.4. We will refer to them as threshold and award/loss
sharing payment functions, respectively.

In our experiments, we simulate the following dynamics of strategic play.
Initially, all agents put an effort of ε > 0 and cast the signal they receive as
their vote. In subsequent rounds, each agent best-responds. In particular, the
structure of the dynamics is as follows:

Round 0: Agent i puts an effort of ε and casts their signal as their vote.

Round j, for j = 1, 2, ..., R: Agent i gets mi as feedback. They decide their
strategy βi ∈ {0, 1} and effort level λi ≥ 0. They draw their signal,
which is alternative T with probability fi(λi) and alternative F with
probability 1 − fi(λi). If βi = 1, they casts their signal as their vote;
otherwise, they casts the opposite of their signal as their vote.
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Figure 4.2: Minimal payment functions computed using the approach of
Section 4.3, after relaxing Equation (4.13) to a lower bound inequality. The
scenario uses n = 100 and the effort function f(x) = 1 − e−x

2 . The payment
functions obtained by solving the linear program from Theorem 4.7 for x ∈
{0.51, 0.6, 0.75, 0.99} are shown. Each point (x, y) on a curve means that an
agent will receive a payment of y if an x-fraction of the agents voted in the
same way as they did. There is a marker for every fifth data point.

In each round after round 0, agents get the exact value of mi as feedback (as
opposed to its distribution)1 but maximize their expected utility with respect
to the components λi and βi of their strategy. Hence, the only difference with
what we have seen in earlier sections is that the calculation of expected utility
considers the actual value of payments and not their expectation, i.e.,

E[ui(λi, βi,mi)] = −λi + p

(
1 +mi

n

)
+ (βi(2fi(λi)− 1)− fi(λi)) ·Q(mi),

where

Q(mi) = p

(
1 +mi

n

)
− p

(
n−mi

n

)
.

By applying Lemma 4.1, we get the following characterization of the best-
response of agent i in round j > 0.

Corollary 4.8. The best response of agent i receiving feedback mi is as follows:
1An alternative implementation would assume that mi takes the number of T -votes in a

randomly chosen previous round. The results obtained in this way are qualitatively similar
to those we present here.
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(a) If |Q(mi)| ≤ 2, then λi = 0 and βi can take any value in [0, 1].

(b) Otherwise, λi = ln |Q(mi)|
2 .

(b.1) If agent i is well-informed and Q(mi) > 2 or agent i is misinformed
and Q(mi) < −2, then βi = 1.

(b.2) If agent i is misinformed and Q(mi) > 2 or agent i is well-informed
and Q(mi) < −2, then βi = 0.

In our experiments, we consider an agent population of fixed size n = 100,
with the fraction of well-informed agents ranging from 0 to 1. We simulate the
dynamics described above for R = 50 rounds and repeat each simulation 20
times. For each experiment, we measure the frequency with which the majority
of votes after the R-th round is for the ground truth alternative T . We do
so for both the threshold and award/loss sharing payment functions, with
parameter ω taking values ranging between 0 and 5 for the threshold payment
functions and between 0 and 100 for the award/loss sharing one. We also
consider the payment functions that arise as solutions to the linear programs
considered in the previous section. In each experiment, we play with the values
of two parameters simultaneously. We consider 100 values on each axis and
plot the resulting data using a heatmap, with each data point corresponding
to the average correctness observed during the experiment. We represent the
correctness using the viridis color scale, with yellow points corresponding to
a good recovery of the ground truth, and dark blue points corresponding to
poor recovery. Random values are represented by turquoise points.

In the first experiment (Fig. 4.3.a), we consider the threshold payment
function and vary the size of the reward ω and the fraction ρ of well-informed
agents. We consider a reasonably high starting effort of ε = 1, corresponding
to a probability of 0.816 of receiving the ground truth as signal. We observe
two distinct regions as we vary the size of the payment. Initially, when the
payment is too small (i.e. ω ≤ 2.5), the outcome of the adjudication is mostly
random. When the payment increases above the threshold, we observe a sharp
phase transition independent of ρ, where the correctness is extremified by
the payment in the following sense: when ρ is sufficiently large (respectively,
small), the mechanism recovers the ground truth with high (respectively, low)
probability. When ρ ≈ 0.5, we see that the outcome of the adjudication is
mostly random.

In the second experiment (Fig. 4.3.b), we consider the award/loss sharing
payment function. The range of ω is changed from [0, 5] to [0, 100], as the latter
constitutes the total award, while the former is the award per agent. All other
parameters are kept the same. We obtain similar results as for the threshold
payment function, i.e. the outcome is mostly random below a threshold above
which we observe a sharp phase transition where the outcome of the mechanism
is extremified. Here, the phase transitions happens when the total award is
ω ≈ 60.
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Figure 4.3: Heatmap of the correctness of the adjudication, plotted with the
fraction of well-informed agents on the y-axis, with six varying x-axes. In each
plot, we run R = 50 rounds with a jury of size n = 100, using 1000 samples
for each data point. The color of a data point indicates the average measured
correctness with the given parameters, using the viridis color scale displayed
in the legend on the right. Yellow corresponds to good recovery, while dark
blue corresponds to poor recovery of the ground truth, while random outcomes
are represented by turquoise. The six x-axes are as follows: (a) Size of the
reward for the threshold payment function, ranging from ω = 0 to ω = 5, with
ε = 1. (b) Size of the reward for the award/loss sharing payment function,
ranging from ω = 0 to ω = 100, with ε = 1. (c) The initial effort ε, ranging
from ε = 0 to ε = 5, with the payment function being the threshold payment
function with ω = 3. (d) The intended fraction x of agents voting for the
ground truth, ranging from x = 0.51 to x = 1, with the payment function
defined by Theorem 4.7. (e) The intended fraction x of agents voting for the
ground truth, ranging from x = 0.51 to x = 1, with the payment functions
obtained from Theorem 4.7 by relaxing Eq. (4.13) to an inequality. (f) The
number of rounds, ranging from R = 1 to R = 100, with the payment function
being the minimal payment function with x = 0.75 from Fig. 4.1.
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In the third experiment (Fig. 4.3.c), we observe the effect on the correctness
by the initial effort. We fix the threshold payment function with ω = 3 such
that the mechanism has a chance to recover the ground truth, and let ε range
from 0 to 5. We observe that, when ε is small, the outcome of the mechanism
is mostly random, while the outcome quickly extremifies as ε increases. This
means the mechanism only works if the agents initially put in sufficient effort.
The results are similar for both the award/loss sharing payment function and
the minimal payment functions.

In the fourth experiment (Fig. 4.3.d), we consider the payment functions
obtained from Theorem 4.7. A subset of the payment functions we use are
depicted in Fig. 4.1. Here, instead of varying the size of the reward, we vary the
parameter x used as input to the linear program. This parameter represents
the intended fraction of agents voting for the ground truth at equilibrium. We
let x range from 0.51 to 1 in increments of 0.01. Here, we observe that for x
close to 0.5 and for x close to 1, the mechanism is extremified, while for x close
to 0.75 and ρ close to 0.5 the outcome of the mechanism is mostly random.
This is rather unexpected since if a 0.75-fraction of the agents vote for the
ground truth, the majority vote will be for the ground truth almost certainly.
Indeed, we observe that in these games when ρ ≈ 0.5, the agents exert effort
close to zero, hence producing the random outcome. We claim that despite
this behavior, the ground truth is still an equilibrium, it is just not a stable
equilibrium and the parties converge to the trivial equilibrium.

In a fifth experiment (Fig. 4.3.e), we consider a different set of minimal
payment functions, obtained by relaxing the equality constraint Eq. (4.13) to
a lower bound inequality. This has the effect of no longer requiring an exact
x-fraction of the agents vote for the ground truth, but instead gives a lower
bound on their number. This slightly changes the payment functions which
can be seen in Fig. 4.2, though they are qualitatively similar to those shown
in Fig. 4.1. Here, we again vary the fraction ρ of well-informed agents on
the y-axis, and the intended fraction x of agents voting for the ground truth,
ranging from x = 0.51 to x = 1 in increments of 0.01. However, we obtain
different and considerably better results than those in Fig. 4.3.d. In particular,
we obtain a good adjudication outcome for any x when ρ > 0.75.

In our sixth and final experiment (Fig. 4.3.f), we aim to explain the
enigmatic behavior of the LP-computed payments for x ≈ 0.75. We fix the
payment function to be the minimal payment function with x = 0.75 and vary
the number of rounds from 1 round to 100 rounds. We do not take into account
round 0 where all parties exert ε > 0 effort in the estimation of the correctness
of the outcome. We observe that the outcome is extremified when the number
of rounds is small and decays as we increase the number of round. We can
explain this result by considering the payment function for x = 0.75 in Fig. 4.1
whose distribution is mostly flat when the outcome is close to being a tie.
Here, the value of Q(mi) is small so the agent will lower the effort they exert,
making it more likely that the outcome will be disputed. This creates a pull
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towards the trivial equilibrium. By contrast, the curves for x ∈ {0.51, 0.99}
have a higher slope close to 0.5, which makes this effect less pronounced. This
explains why the adjudication outcome is mostly random for x ≈ 0.75. By
design, the linear program finds minimal payments that ensure there is an
equilibrium where an x-fraction of the agents vote in favor of the ground truth.
However, it does not constrain the solution to have the property that the good
equilibrium is stable. In some sense, the fact that the non-trivial equilbrium is
stable when x is far from 0.5 is happenstance and begs the deeper question
why the solutions to the linear program are of the form we observe. Intuitively,
it makes sense that attaining a high accuracy requires large payments. A
similar phenomenon seemingly holds for accuracies close to 0.51 which can be
explained informally as follows. Combinatorially, there are only a few ways to
attain an accuracy of 0.51 which necessitates the use of large punishment and
rewards when the vote is close to being a tie. By contrast, for larger ρ, there
are more ways to attain an accuracy of 0.75 in the majority, hence loosening
the requirements on the payments. This suggests that the case x = 0.75 does
not provide positive results in practice because of instability of equilibria. It
would be interesting to explore whether it is possible to extend our approach
with additional natural constraints that ensure the non-trivial equilibrium is
also stable.

Our experiments suggest that several classes of payment functions can be
used to recover the ground truth with high probability, provided the agents
are well-informed on average. Clearly, there is much work yet to be done in
designing payment functions with desirable properties: while the threshold
function and the award/loss sharing function seem to recover the ground truth
reliably, it might be difficult in practice to pinpoint the location of the phase
transition, as this requires estimating the effort functions used by actual jurors.
The same holds for the minimal payment functions.



Chapter 5

Payments

“Never underestimate the effectiveness of a straight cash
bribe.”

Claud Cockburn

It is well-known that the equilibrium often does not ensure the best
outcome for the agents involved. The most famous example is the
prisoner’s dilemma where two criminals are arrested and interrogated
by police in separate rooms: each criminal can either cooperate with

their accomplice, or defect and give them up to the police, resulting in a
reduced sentence. It is well-known that cooperation is not an equilibrium, as
neither criminal can trust the other not to defect, although it would be in their
common interest to do so. In game theory, this inefficiency can be measured
using the price of anarchy (PoA), defined as the ratio of the social optimum
and the worst possible equilibrium. In seminal work [157], Koutsoupias and
Paradimitriou consider a simple model of network routing where the PoA is
shown to be ≥ 1.5. This means the lack of coordination between the agents
leads to a 33% loss of performance compared to the optimal setting in which
the agents coordinate. While this may be problematic on its own, consequences
may be more severe if the interaction we are trying to model is related to
security. Here, a lack of coordination may lead to irreparable damage (such
as the leak of private information) if some agents deviate from the intended
strategy. Indeed, in cryptography, such complications are the cause of a
seemingly irreconcilable gap between the worlds of rational cryptography and
the classic cryptographic model: in [130], Halpern and Teague famously show
there is no deterministic bounded-time interactive protocol for secure function
evaluation on private inputs involving rational agents with a certain class of
utility functions, namely agents who prefer to learn the output of the function,
but prefer as few other agents as possible learn the output. By contrast, there
are simple and efficient actively secure protocols when a sufficient subset of
the agents are guaranteed to be honest, even when the remaining agents are

73
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allowed to deviate arbitrarily [74]. A weaker notion of security called ‘covert
security’ was proposed by Aumann and Lindell in [16]. Here, agents are allowed
to deviate but are caught with some constant non-zero probability. This was
extended by Asharov and Orlandi in [12] to publicly verifiable covert (PVC)
security where a certificate is output that can be verified by a third agent
to determine if cheating has occurred. The underlying assumption of these
protocols is that the cost associated with the risk of being caught outweighs
the benefit of deviating. Indeed, the problem of misaligned equilibria is usually
mitigated in practice by ensuring appropriate punishment for misbehaving,
such as fining deviants, banning them from participating again, or subjecting
them to other legal repercussions, effectively changing the utilities of the game
to ensure being honest is, in fact, an equilibrium. In our example with the
prisoner’s dilemma, a criminal who defects might face consequences after the
other criminal is released from prison, as the adage goes: “snitches get stitches”.
Sometimes, it is less clear how to punish agents, as when the games are models
of interaction on the internet where agents can be anonymous.

In this chapter, we propose a generic mechanism to incentivize behavior
in an arbitrary finite game with the use of payments. The mechanism can
be implemented using deposits to a smart contract deployed on a blockchain
and can be considered a generalization of the smart contract for decentralized
commerce that we presented in Chapter 3. Note that our task is trivial if we
allow the mechanism to observe all actions taken in the game, as this allows
the mechanism to simply punish those agents that deviate from the intended
behavior. Hence, our main contribution is proposing a framework that models
a mechanism that only probabilistically observes actions taken by the agents
and to determine appropriate payments. Indeed, the problem of misaligned
equilibria is usually mitigated in practice by ensuring appropriate punishment
for misbehaving, such as fining deviants, banning them from participating
again, or subjecting them to other legal repercussions, effectively changing
the utilities of the game to ensure being honest is, in fact, an equilibrium. In
our example with the prisoner’s dilemma, a criminal who defects might face
consequences after the other criminal is released from prison, as the adage
goes: “snitches get stitches”. Sometimes, it is less clear how to punish agents,
as when the games are models of interaction on the internet where agents can
be anonymous.

Attribution. This chapter (including the above introduction) is taken verbatim
from [223], with only minor modifications to the formatting and the prose.

Our Contributions

We propose a mechanism for incentivizing intended behavior in an arbitrary
finite game with the use of payments. We show that payments can be used
to implement any set of utilities if and only if the mechanism can essentially
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infer the entire execution of the game (Lemma 5.6). We show that our model
generalizes similar models in the literature, such as ‘adversarial level agreements’
by George and Kamara [109] retained as a special case. We sketch how to
implement the payments in a distributed setting by letting agents deploy a
smart contract on a blockchain. We demonstrate how to use the framework by
applying it to the special case of decentralized commerce, resulting in a smart
contract that is qualitatively similar to the one proposed in Chapter 3.

We investigate the computational complexity of computing an optimal
payment scheme, in the sense that the payments are minimized. For games
of perfect information, we observe that the problem is equivalent to linear
programming under logspace reductions, thus showing the following.

Theorem 5.1 (Informal). Finding an optimal payment scheme for a finite
game of perfect information, or showing no suitable payment scheme exists, is
P-complete.

For games of imperfect information, it is well-known that even computing an
equilibrium is PPAD-complete [81], so it is unlikely there is an efficient algorithm
for finding an optimal payment scheme in these cases. As a consequence, we
conjecture that finding an optimal payment scheme for finite games of imperfect
information is PPAD-hard.

To showcase the applicability of our model, we apply it to the problem of
secure multiagent computation. We show that payments can be used, together
with what is known as an ‘ε-deterrent publicly verifiable covert (PVC) secure
protocol’ [12, 16], to yield a secure protocol for secure function evaluation
involving rational agents, where ε is the probability of an agent getting caught
cheating. We stress that this does not violate the impossibility result of Halpern
and Teague for the simple reason that they explicitly assume the utilities are
not quasi-linear, hence not allowing payments. By contrast, we allow payments
to alter an agent’s utility function, in such a way that the conditions required
to establish the impossibility result no longer hold.

Theorem 5.2 (Informal). Any function f can be computed with δ-strong game-
theoretic security with rational agents with black-box access to any ε-deterrent
PVC protocol, by using a payment scheme where each agent pays O(1 + δ/ε).

Finally, we prove a lower bound on the size of the largest punishment
(equivalently, deposit) for all games that are budget balanced. We show the
punishments must be linear in the size of the desired level of security. Note
that this matches asymptotically the bound of Theorem 5.2 since n, s, and ε
are constant for any fixed PVC protocol.

Theorem 5.3 (Informal). Any budget balanced payment scheme that achieves
δ-strong game-theoretic security in a game of n agents must have a largest
punishment that is no smaller than Ω(1 + δ

√
n/s), where s is the number of

observable outcomes.
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This chapter paper is organized as follows. We start in Section 5.1 by
defining our model of payment schemes. We show how to implement a payment
scheme using a smart contract, and prove that payments can be used to
implement any set of utilities if and only if the mechanism can essentially
infer all information about what happened. In Section 5.2, we consider the
computational complexity of finding payment schemes and prove Theorem 5.1.
Next, in Section 5.3, we apply the framework to secure MPC and prove
Theorem 5.2. Finally, in Section 5.4, we show a lower bound on the size of the
maximum deposits and prove Theorem 5.3.

Related Work

Mechanism Design.

The use of payments to incentivize behavior is a well-studied problem in
mechanism design, where the payments are often called ‘scoring rules’. Such
a rule assigns a score (payment) to each outcome of an interaction, and can
e.g. be used to elicit truthful responses. In this case, we say the scoring
rule is proper, examples of which include the quadratic scoring rule and the
logarithmic scoring rule [116, 224]. A mechanism for which an agent maximizes
their utility by reporting their beliefs truthfully is said to be truthful. The
logarithmic scoring rule is used by Prelec to implement a truthful mechanism
for voting in the Bayesian truth serum (BTS) model [206]. This was extended
to ‘robust BTS’ by Witkowski and Parkes [254] that instead uses the quadratic
scoring rule. Scoring rules are also used in peer prediction methods [178],
Bayesian markets [20] and choice matchings [75]. Payments are also used more
generally in the generic Vickrey-Clarke-Groves (VCG) mechanism for obtaining
a socially optimal outcome [67, 127, 248]. However, the VCG mechanism is
fundamentally limited to games that involve distributing a set of ‘items’ among
a set of agents. It is not obvious how this would apply to an arbitrary extensive-
form game. Another relevant line of work is that of environment design [265]
by Zhang, Chen, and Parkes where a designer wants to influence an agent’s
decisions (arbitrarily) by making changes to their environment. They consider
a single agent in a dynamic setting and give an elicitation algorithm (see also
work by Zhang and Parkes [264]) that maximizes the goal value for the agent.
Although expressive, it is not obvious how to apply the framework to arbitrary
extensive-form games with any number of agents.

Distributed Computing.

Numerous works in the literature take advantage of payment schemes to
incentivize the participants to behave honestly. Such payment schemes are
usually implemented by deploying a smart contract on a blockchain, such as the
contracts [11, 222] presented in Chapter 3; the protocol starts with each agent
submitting a ‘deposit’ that is repaid only if they are found to act as intended.
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The work most related to ours is by George and Kamara [109] who propose a
framework for incentivizing honesty using ‘adversarial level agreements’ that
specify damages agents must pay if found to act adversarially. We will show
later that their model can be recovered as a special case of our model. Faust,
Hazay, Kretzler, and Schlosser propose ‘financially backed covert security’ [102]
to punish agents who are caught deviating in a PVC protocol. Their work is
focused on the cryptographic implementation, and as a result, they do not
formally analyze the equilibria induced by their mechanism. In [268], Zhu, Ding,
and Huang propose a protocol for two-agent computation that incentivizes
honesty using a publicly verifiably covert secure protocol augmented with a
payment scheme. In [91], Dong et al. propose a protocol that uses payment
schemes to incentivize honesty in outsourcing cloud computations. BitHalo
[269] implements an escrow using deposits and multi sigs that was analyzed in
[31] by Bigi et al. Deposits have also been used for ‘truth-telling mechanisms’:
in [3], Adler et al. propose a system, Astraea, that uses deposits and rewards
to incentivize a group of voters to decide the validity of a proposition. Kleros
[170] uses a similar mechanism to implement a decentralized court system.

Economics.

In the economics literature, the payment schemes that we study are known
as ‘deposit-refund systems’ [106]. They are often studied in the context of
environmental issues for incentivizing compliance with laws and regulations.
In [122], Grimes-Casey et al. propose a game-theoretic model using such
deposit-refund systems to analyze consumer behavior with refillable plastic
bottles. Indeed, deposit-refund systems are currently used in many countries
for closing the gap between the marginal private cost and the marginal external
cost of disposing of e.g. bottles, batteries, tires, and consumer electronics, see
e.g. [252] for an overview. Such systems can also be used at a higher level of
governance: in [180], McEvoy studies deposit-refund systems as a means of
enforcing nations to comply with international environmental agreements.

5.1 Payment Schemes
In this section, we present our model of games with payment schemes and show
when they can be used to ensure it is rational to play an intended strategy.
We consider only finite games of perfect information as it is unlikely there is
an efficient procedure in general (as was argued in Chapter 2). We consider a
set of n agents P1, P2, . . . , Pn playing a fixed finite extensive-form game G of
perfect information. The agents are assumed to be risk-neutral such that they
aim to maximize their expected utility. We assume the agents have quasi-linear
utilities such that we can use payments to change their incentives. We take as
input a unique pure strategy profile s∗ that we want the agents to play that
we call the honest strategy profile. We denote by u∗ = u(s∗) ∈ Rn the utility
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vector for the honest strategy profile. Note that s∗ is required to be pure since
it is impossible to determine (without multiple samples) if an agent plays a
mixed strategy. This has the effect that s∗ defines, at each branch in the game,
a unique ‘honest move’ that the corresponding agent must play. Our goal is to
construct a procedure Γ that takes as input a game G in a black-box way and
produces an ‘equivalent’ game Γ(G) that implements a different utility matrix
E such that s∗ is an equilibrium.

Information Structures.

To construct the procedure Γ, we need to be able to infer something about what
happened during the execution of the game, as otherwise we are simply ‘shifting’
the utilities of the game, not changing the structure of its equilibria. We call
a mechanism that enables inferring information from a game an information
structure. We assume playing the game emits a symbol from a fixed finite
alphabet Σ of possible outcomes that can be observed. The alphabet serves as
a proxy for how the agents acted in the execution of the game. We associate
with each leaf of the game a distribution on Σ. When the game terminates, a
symbol is sampled according to the distribution and observed in a one-shot
manner (the observation should not be considered a Bayesian update).

Definition 5.4 (Information Structure). An information structure for G is a
pair 〈Σ,Φ〉 where Σ is a finite alphabet of symbols with some arbitrary but
fixed order on its symbols, σ1, σ2, . . . σs, and where Φ = (φkj) ∈ Rs×m is a
matrix of emissions probabilities such that every column of Φ is a pdf on the
symbols of Σ.

Given a finite game with an information structure, a payment scheme Γ is a
mechanism that changes the utilities of the game. At the end of the game, the
payment scheme rewards or punishes the agents based on what was emitted
by the information structure. We assume quasi-linear utility functions, i.e. if
for an agent the game ends in an outcome with utility u and we give them x
money, their utility is u + x. We may also say the utilities of the game are
given in arbitrarily divisible currency which the payment scheme can process.
An agent Pi is indifferent to obtaining an outcome that gives them uij utility
and receiving uij money. In other words, we make the implicit assumption that
‘everything has a price’ and intentionally exclude games that model interactions
with events that are not interchangeable with money. This circumvents the
impossibility result of Halpern and Teague who implicitly assume a fixed total
order on the set of possible outcomes. By contrast, quasi-linearity allows the
payment schemes to alter the order by punishing or rewarding agents with
money.
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Definition 5.5 (Payment Scheme). A payment scheme for 〈G, I〉 is a matrix
Λ = {λik} ∈ Rn×s, where I = 〈Σ,Φ〉 is an information structure for G, and
λik is the utility lost by Pi when observing the symbol σk ∈ Σ.

Λ is a matrix that explicitly defines how much utility λik agent Pi loses
when the payment scheme observes the symbol σk ∈ Σ. Note that Λ is allowed
to contain negative entries which means agents receive back more funds from
the payment scheme than they initially deposited. When the game is played
reaching the leaf `j , by quasi-linearity the expected utility of agent Pi is the
utility they would have received in a normal execution, minus their expected
loss from engaging with the payment scheme:

E[Pi utility in leaf `j ] = uij −
s∑

k=1

λik φkj = [U−ΛΦ]ij (5.1)

Correspondingly, we say Λ implements the utility matrix E if E = U − ΛΦ.
For a fixed E, we denote by S(E) ⊆ Rn×s, the set of all payment schemes that
implement E which constitutes an affine subspace of Rn×s. We now consider
the search problem, given Φ and U, find an Λ ∈ S(E) with minimal payments.
We will show this problem is equivalent to linear programming, and thus
P-complete.

Lemma 5.6. S(E) is nonempty for every E if and only if Φ is left-invertible.

Proof. If Φ is left-invertible, then for any E we can let ΛE := (U − E)Φ−1

where Φ−1 is a left-inverse of Φ. It follows that U−ΛΦ = U−(U−E)Φ−1Φ =
U−U + E = E.

Suppose instead S(E) is nonempty for each E. This means that we can
always find ΛE that solves U−E = ΛEΦ. Assume for the sake of contradiction
that there are fewer symbols than leaves. Thus, there is a leaf for which the
payment vector is a fixed linear combination of the payments of the other leaves;
there must be an E that we cannot implement. But this is a contradiction so
we assume there are at least as many symbols as leaves. This means we can
choose E such that U− E is left-invertible with left-inverse F ∈ Rm×n, which
means that FΛEΦ = Im, a contradiction.

In particular, we can only implement any E we want if there are at least
as many symbols as leaves in the game tree, and that these symbols are not
duplicates, in the sense that the distributions of symbols across the leaves are
distinct.

Properties of Payment Schemes.

In general, we may want to pick an Λ ∈ S(E) with some desirable properties. If
a property is linear, it will intersect S(E) in a (possibly empty) affine subspace
of S(E) and as such does not change the complexity of the search problem. We
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shall only consider payment schemes that are budget balanced, in the sense
that the total payments are non-negative. Other examples of linear properties
include (ex ante/ex post) individual rationality, honest invariance (utility for
s∗ is unchanged by payments), or strong budget balance (payments are exactly
zero). In general, such properties are hard to characterize, as they are not
necessarily invariant to scaling/perturbing the utilities (unlike an equilibrium),
and as such are sensitive to the precise modeling of utilities used for a given
application.

Proposition 5.7. To implement E with strong budget balance, each column of
U− E must sum to 0.

Proof. To implement E, we must have ΛΦ = U − E. From strong budget
balance we have that 1>Λ = 0>, and hence 1>(U− E) = 1>ΛΦ = (1>Λ)Φ =
0>Φ = 0.

A Special Case: Adversarial Level Agreements

We now show how the model of ‘adversarial level agreements’ (ALAs) by
George and Kamara [109] can be recovered as a special case of our model. An
ALA for a game with n agents consists of 1) a description of the intended
strategy for each agent, and 2) a vector of damages d ∈ Rn that specifies how
much utility di agent Pi should lose when found to deviate from the intended
strategy. Their model does not explicitly consider deviations by more than a
single agent, so we can state this as an information structure with the alphabet
Σ = {>,⊥1,⊥2, . . . ,⊥n}. Here, > means all agents were honest, and ⊥i means
Pi deviated. The emission matrix Φ depends on the specific application. An
ALA then corresponds to a payment scheme of the following form.

Λ =


0 d1 0 · · · 0
0 0 d2 · · · 0
...

...
...

. . .
...

0 0 0 · · · dn


Note that we can easily generalize this to deviations by any t ≤ n agents by
including more symbols, e.g. ⊥12 or ⊥456.

Payment Schemes as Smart Contracts.

We now explain informally how a payment scheme can be deployed in practice
as a smart contract running on a blockchain. We present a simplified model
as there are many subtleties in getting such contracts rigorously secure, see
e.g. [102, 152] for more formal cryptographic modeling. At a high level, we
want to ensure agent Pi loses λik utility when the symbol σk is observed. We
can implement this by defining λ∗i := maxk∈{1,2,...s} λik and letting each agent
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Pi make a deposit of size λ∗i to a smart contract before playing the game.
Afterwards, the agents are repaid appropriately by the payment scheme to
ensure their utility is as dictated by Λ. Suppose we fix some payment scheme
Γ, then the game Γ(G) is played as follows:

1. Each Pi makes a deposit of λ∗i to the payment scheme.

2. The game G is played, and a symbol σk is observed.

3. Each agent Pi is repaid λ∗i − λik.

This can be implemented in a fairly straightforward manner using a scripting
language and deployed as a smart contract running on a blockchain, assuming
access to some information structure with known bounds on the emission
probabilities. We stress that this is only one possible implementation of a
payment scheme suitable in any scenario, even over the internet when agents
are anonymous. The important thing is that agent Pi loses λik utility when
symbol σk is observed. When agents are not anonymous and can be held
accountable, the payment scheme can be used in an optimistic manner as was
argued by George and Kamara.

Example: Decentralized Commerce

In this section, we demonstrate the applicability of our model by applying it
to the problem of decentralized commerce that was introduced in Chapter 3.
Consider a seller S who wants to sell an item it over the internet to a buyer
B for x money. To make the problem non-trivial, we assume it is physical
such that the protocol cannot be entirely implemented using cryptography
(see e.g. [11, 13, 96, 161, 162] for solutions that work with digital goods under
computational assumptions). We assume it has a value of y to the seller, and
a value of x′ to the buyer. To make the problem feasible, we assume that
y > x > x′ > 0. We consider a simple game where S first decides whether to
send it to B, after which B decides whether or not to pay S. The resulting
extensive-form game is depicted in Fig. 5.1. In this simple game, the trade
will never be completed, as it is evidently rational for the buyer to always
reject delivery of the item; consequently, it is rational for the seller not to send
the item. This seems to contradict empirical data, as variants of this game
are played successfully all the time. The reason for this is that, in practice,
buyer and seller are not anonymous and can be held accountable for fraud,
and potentially subject to legal repercussions. Also, such trades are typically
processed by a middleman that may offer some insurance for either buyer or
seller. However, from a cryptographic point of view, centralized solutions are
undesired. There are potential privacy risks with using centralized marketplaces,
e.g. middlemen using consumer analytics for targeted advertising. Also, such
marketplaces potentially have an incentive to engage in monopolistic activity,
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S

B

B : −x
S : x

accept

B : 0
S : 0

reject

not send

B

B : y
S : −x′

reject

B : y − x
S : x− x′

accept

send

Figure 5.1: Extensive-form representation of the decentralized commerce game.
The dominating paths are shown in bold. We observe that the dominating
strategy is for the seller not to send the item, and for the buyer to withhold
their payment regardless of whether they received the item.

e.g. through removing competitors’ products or differential pricing based on
consumer demographics. Some of these issues are fixed by a decentralized
alternative, for which compliance with laws and regulations can be ensured
by instantiating the smart contract on a blockchain with revocable anonymity
where users register with an identity provider, and can be deanonymized, e.g.
upon request by the court system [76].

We assume the agents use a smart contract to process the trade and have
at their disposal an adjudication mechanism with error γ < 1

2 , such as the one
described in Chapter 4. To proceed, we need to define an information structure
on the game. We first define an alphabet of outcomes as Σ = {>,⊥B,⊥S}.
Here > is a symbol emitted if the buyer accepts the trade, and ⊥B,⊥S are
outcomes of the oracle if it is invoked, where ⊥B (resp. ⊥S) means ‘the buyer
(resp. the seller) was dishonest’. We define the emissions matrix of the game
as follows.

Φ =

1 0 0 1
0 1− γ γ 0
0 γ 1− γ 0


Now, let us assume we want to instantiate payments to ensure the game has
x-strong game-theoretic security. We proceed using backward induction in
Fig. 5.1, letting the corresponding utilities have a difference of ≥ x. This is
e.g. achieved by defining the following ‘desired’ utility matrix E.

E =

(
−x 0 y − 2x y − x
x −x′ −x′ x− x′

)

Note that despite the payments, the equilibrium is individually rational as
u∗ = (y − x x− x′)>, which is non-negative as y > x > x′ by assumption. In
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order to implement E, the payment scheme Λ must satisfy Eq. (5.1) as follows.

ΛΦ = U− E
⇐⇒(
λB> (1− γ)λB⊥B

+ γλB⊥S
γλB⊥B

+ (1− γ)λB⊥S
λB>

λS> (1− γ)λS⊥B
+ γλS⊥S

γλS⊥B
+ (1− γ)λS⊥S

λS>

)
=

(
0 0 2x 0
0 x′ 0 0

)
This immediately gives λB> = λS> = 0, while the remaining payments are
given by four equations with four unknown and can be solved using Gaussian
elimination to yield the following payment scheme.

Λ =

(
0 − 2γ

1−2γx
2(1−γ)
1−2γ x

0 1−γ
1−2γx

′ − γ
1−2γx

′

)

In other words, the buyer must make a deposit of size 2(1−γ)
1−2γ x to the smart

contract, while the seller must make a deposit of size 1−γ
1−2γx

′. To make this
more concrete, suppose we have x = 100€, x′ = 50€, and γ = 0.1. Then the
buyer must make a deposit of size λ∗B = 225€, while the seller must make a
deposit of size λ∗S ≈ 57€. The large difference in the deposits reflects the fact
that the protocol is ‘biased’ in favor of the buyer. In practice, while x is known
to the mechanism, x′ is usually not. Instead, we can use the optimistic variant
of this payment scheme that we proposed in Chapter 3.

5.2 Computational Complexity
In this section, we analyze the computational complexity of finding payment
schemes in arbitrary games. For games of perfect information, we observe the
problem is equivalent to linear programming (denoted LP) under logspace-
reductions, thus showing the problem is complete for P.

More formally, we consider the following optimization problem.

PaymentSchemeδt

• Instance. Finite game G with utility matrix U ∈ Rn×m and intended
strategy profile s∗; finite alphabet Σ with s = |Σ|, emission matrix
Φ ∈ Rs×m, and cost vector c ∈ (R ∪ {∞})ns.

• Output. Budget balanced payment scheme Λ ∈ Rn×s s.t. ΓΛ(G) has δ-
strong, t-robust game-theoretic security, for which c>vec(Λ) is minimized;
or ⊥ if no such payment scheme exists.

Here,∞ is a formal symbol in the cost function that ‘forces’ the correspond-
ing payment to equal zero. It does not contribute to the actual cost function.
This can e.g. be used to implement honest invariance, to ensure the utility
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vector for the intended strategy remains unchanged. We allow this modeling
to simplify our reductions, though we can make do without this assumption;
we sketch how to do so at the end of the section.

Theorem 5.8. PaymentSchemeδt is P-complete for games of perfect information.

We prove this in the next two subsections, by reducing both to and from
LP using logspace-reductions. For games of imperfect information, it is unlikely
we can find an optimal payment scheme to change the equilibrium, as even
computing the equilibrium for these games is known to be PPAD-complete. As
a result, we conjecture the problem to be hard.

Conjecture 5.9. PaymentSchemeδt is PPAD-hard for imperfect information
games.

Upper Bound: Reduction to LP

In this section, we show how to reduce PaymentSchemeδt to LP. Since the
feasible region is a convex polyhedron, it is unsurprising that we can use
linear programming to decide the minimal size of the deposits necessary to
establish security. In particular, we can write the necessary constraints for
δ-strong t-robust game-theoretic security as a set of linear constraints. For
convenience, we will represent the utility matrix U as a vector u ∈ Rnm in
row-major order. We will then collect the set of necessary constraints in a
matrix Ψ(t) ∈ Rα(t)×nm where α(t) denotes the number of such constraints. We
also let δ(t) = [δ, δ, . . . , δ]> ∈ Rα(t) be a vector only containing δ. Note that
α(t) is a constant that depends on the structure of the game.

Proposition 5.10. PaymentSchemeδt can be reduced to LP in logspace.

Proof. First note that the set of utility matrices with δ-strong t-robust game-
theoretic security can be recovered as the set of solutions to the following
equation:

Ψ(t)v ≥ δ(t) (5.2)

The matrix Ψ(t) can be computed using a simple recursive procedure. In the
base case, the leaves, there are no constraints. At each branch owned by an
agent Pi, we need to bound the probability of each undesirable outcome in
terms of the honest outcome u∗. To do so, we compute the t-inducible region,
defined as the set of outcomes inducible by a coalition C containing Pi of size
≤ t. For each outcome v in the t-inducible region, we add a column ψ ∈ Rnm

to Ψ(t) that ensures that u∗
i ≥ vi+ δ. To do so, suppose u∗

i and vi have indices
a, b respectively, we then let ψim+a ← 1, and ψim+b ← −1 and zero elsewhere,
and add an entry containing δ to δ(t). This procedure can be completed using
a single pass of the game tree by keeping track of the t-inducible region as we
go along. Note that there is a technical issue since our decision variables Λ
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are not in vector form, as is usual of linear programming. To remedy this, we
also want to collect the deposits in a vector λ ∈ Rns in row-major order. For
a given information structure 〈Σ,Φ〉, we construct a matrix R equivalent to Φ
in the following way: for every index ij in Λ, we construct the ‘base matrix’
Lij that is 1 in index ij, and 0 everywhere else. We then compute a row of
R by computing vec(LijΦ) as the product LijΦ put in row-major order. It is
not hard to see that the image of Φ is isomorphic to the column space of R,
and hence we say λ implements the utility vector e iff e = u−Rλ. We now
substitute this in Eq. (5.2) to get Ψ(t)(u − Rλ) ≥ δ(t). Next, we move the
constant terms to the right-hand side to yield the following:

−Ψ(t)Rλ ≥ δ(t) −Ψ(t)u (5.3)

We also have to ensure the payment scheme is budget balanced, but this is
a linear property and thus can be expressed as a set of linear constraints∑n

i=1 λis+k for every k = 1 . . . s. Finally, note that our objective function is
c>λ, and since all constraints are linear we can produce the following linear
program.

min c>λ
s.t. −Ψ(t)Rλ ≥ δ(t) −Ψ(t)u

n∑
i=1

λis+k ≥ 0 ∀ k = 1 . . . s

To deal with ∞ in the cost function, we may set the corresponding cost of
the linear program to an arbitrary value and add an equality constraint to
ensure the decision variable equals zero. Note that the linear program can be
constructed by maintaining a constant set of pointers to the game given as
input, which concludes the proof.

Note that we can add additional linear constraints to the resulting program
to impose contraints on the resulting payments. This can be used to implement
strong budget balance (replace ≥ 0 with = 0), individual rationality (ensure
u∗ ≥ 0), envy freeness, or honest invariance.

Lower Bound: Reduction from LP

We now show how to reduce LP to PaymentScheme01 using logarithmic space.
The resulting game is a two-agent finite game of perfect information. The
reduction can easily be adapted to any δ ≥ 0, t ≥ 1. Consider an arbitrary
instance of LP, {min c>x | Ax ≥ b, x ≥ 0}, where c = (ci) ∈ Rn,A = (aij) ∈
Rm×n, and b = (bi) ∈ Rm. Without loss of generality, we will assume that the
columns of A have a positive column sum. This can be achieved by shifting A
and b correspondingly.
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utilities

target

emissions

P1

P2

(1,b1)

1‖0n

(0, 0)

0‖a1

P2

(1,b2)

1‖0n

(0, 0)

0‖a2

· · · P2

(1,bm)

1‖0n

(0, 0)

0‖am

(0, 0)

1‖0n

Figure 5.2: Depiction of the reduction from LP to PaymentScheme01. The
dashed arrows depict the corresponding information structure (pdf for each
leaf). The agent P1 wants to sabotage satisfiability of the circuit and gains 1
utility for doing so (0 otherwise). The agent P2 will sabotage the ith gadget
(and hence allow P1 to win) if and only if the ith inequality is not satisfied.
A payment scheme corresponds to an assignment of the variables in the LP-
instance, with emission probabilities proportional to the weights, such that an
equilibrium with the target in its support corresponds to a satisfying assignment
of the variables.

Proposition 5.11. LP can be reduced to PaymentScheme01 in logspace.

Proof. At a high level, the reduction is as follows. We first describe the game,
and afterwards derive a suitable information structure. The game consists
of two agents P1, P2. The root of the game consists of a move for agent P1

who wants to ‘sabotage’ satisfaction of the program. They get utility 1 if they
sabotage an inequality, and 0 otherwise. They are allowed to choose between a
set of m gadgets, one for each inequality a>i x ≥ bi. In addition, they can choose
a ‘target’ leaf that pays 0 to both agents. Each gadget consists of a move for
the other agent P2 who can choose whether to satisfy their inequality or not.
If they sabotage their inequality (move ‘left’) they get bi utility, otherwise if
they move ‘right’ they get 0 utility. See Fig. 5.2 for an illustration. The SPE
of the game is for P2 to move left in the ith gadget if bi > 0, and for P1 to
choose any convex combination of the gadgets for which the agents move left.
Our goal is to design an information structure for which a payment scheme can
ensure that P1 chooses the target if and only if all inequalities are satisfied.

We now describe the information structure of the game. We have to
specify an alphabet and a pdf for each leaf of the game. We will have Σ =
{>,⊥1,⊥2, . . .⊥n}, where > means ‘all inequalities are satisfied’, while ⊥i is
associated with the decision variable xi. When P2 satisfies their inequality, the
symbol > is outputted with probability 1. When P2 sabotages their inequality,
the column ai is used a pdf to sample the symbols {xi}ni=1. Of course, ai is
not necessarily a pdf, but we can normalize it by defining aij = aij∑n

k=1 aik . We
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similarly define bi =
bi∑n

k=1 aik and use bi in lieu of bi in the gadgets. This
operation is well-defined since A was assumed to have positive column sums,
and inequalities are preserved under positive scaling. To summarize, when an
agent goes left, the corresponding pdf is [1, 0, 0, . . . , 0]> ∈ Rn+1, and when an
agent goes right, the pdf is 0‖a ∈ Rn+1. As the intended strategy profile s∗,
we consider any strategy profile where P2 always move right and P1 chooses an
arbitrary gadget. The cost function ĉ of the payment scheme will be defined
as follows,

ĉ := [

n+ 1 terms︷ ︸︸ ︷
∞,∞, . . . ,∞,∞, c1, c2, . . . , cn]> ∈ R2n+2,

Now, suppose Λ ∈ R(n+1)×(m+1) is output as an optimal payment scheme. Let
Λ•i denote the ith row of Λ (as a column vector) corresponding to the leaf
where Pi goes right, and let Φi = (0‖ai) be the column of Φ corresponding
to going right in the ith gadget. Now, since some of the weights are ∞, we
know that Λ1 = 0 and Λ•1 = 0. Hence, the utility vector going right remains
[1, 0, 0, . . . , 0]> for each gadget, and the utility for P1 remains unchanged. By
optimality and since δ = 0, t = 1, we know that s∗ must an SPE. This means
that P2 must receive (at least) as much utility going left as they do going right
(otherwise P1 would not hit the target). Then by Eq. (5.1), we must have,

∀i. (−Φ>
i Λ•2 ≥ bi) ⇐⇒ ∀i.((0‖ai)>(−Λ•2) ≥ bi ⇐⇒ Ax ≥ b

where x := [Λi2]
m
i=1 is the vector consisting of the non-zero (last m) entries of

Λ•2. This means that s∗ is an SPE if and only if the inequalities are satisfied.
We know further that x ≥ 0 since the payment scheme is budget balanced.
Minimization of the objective function c>x comes directly from minimization
of ĉ>vec(Λ), as some of the weights are ∞. Finally, note that all parts of the
reduction can be performed by maintaining a constant set of pointers, thus
concluding the proof.

Removing ∞. To remove ∞ from the optimization problem, we may add an
additional dummy agent P3 who provides the necessary ‘liquidity’ to P2, while
ensuring P1’s utility is left unchanged (note that the payment scheme must
be budget balanced, i.e. column sums of Λ must be non-negative). We assign
to P3 arbitrary utilities in the reduction, and assign to the payments of P3

the opposite weights given to P2, i.e. −ci instead of ci. The weights given
to the payments of P1 are all zero. It is not hard to see that the resulting
payment scheme has the same set of optimal values, as optimization problems
are invariant under scaling. In addition, all payments to P1 must be zero as
any solution with non-zero payments to P1 are strictly dominated by assigning
the payment to either P2 or P3 if the corresponding weights are non-zero. If
instead, the corresponding weights of P2, P3 are both zero, we can slightly
perturb the cost of P1 to e.g. 1 to ensure the utility of P1 is unchanged.
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5.3 Case Study: Secure Rational MPC from PVC
In this section, we apply our framework to a more complicated scenario
involving secure multiagent computation (MPC). Our work is similar to [102],
in that we also use payments to incentivize honesty from a PVC protocol.
Their work focuses mainly on the cryptographic modeling, while our focus is
mainly game-theoretic and thus complements their work. We start with a brief
and informal definition of MPC for the purpose of self-containment, and refer
to [74] for more details and formal definitions.

Secure Multi-agent Computation (MPC). In MPC, a set of n mutually
distrusting agents P1, P2, . . . , Pn want to compute a public function f on their
private data x = (x1, x2, . . . , xn). The agents engage in an interactive protocol
that ends with each of them producing an output yi. The goal is for the output
to be correct such that yi = f(x), and private, meaning the protocol leaks
no information about the inputs of the agents, other than that which can be
gathered from the function output itself. This should hold even if a coalition
of t agents are controlled by a monolithic adversary who tries to break security
of the protocol. MPC is a large research area with many proposed protocols,
depending on the assumptions. One of the weakest notions of security is that
of passive security where correctness and privacy are guaranteed against an
‘honest-but-curious’ adversary, who adheres honestly to the protocol description
but tries to collect more information than they should. Such protocols are
typically comparatively cheap, in contrast to protocols with active security
that remain secure even if the adversary may deviate arbitrarily from the
protocol description. Active protocols are typically orders of magnitude more
expensive than their passive counterparts.

To remedy this, Aumann and Lindell [16] propose an intermediate notion
of security called covert security where the adversary is allowed to cheat, but is
caught with some constant non-zero probability. They propose three different
definitions, giving different power to the adversary. The weakest notion is
‘failed simulation’ where the adversary learns the inputs of the honest agents
when caught, while the strongest is called ‘strong explicit cheat formulation’
where they do not. In the present section, we opt for the latter, though our
model easily adapts to the former albeit with larger payments. A disadvantage
of covert secure protocols is that they do not allow the participants to convince
a third agent who was dishonest which means they are not directly applicable
to our setting. This was augmented to publicly verifiable covert security (PVC)
by Asharov and Orlandi [12] where a proof of cheating is output that can be
verified by a third agent. The underlying assumption of these protocols is
that the adversary suffers some cost from being caught, meaning it is rational
for them not to cheat. The typical use-case is that of competing businesses
who may wish to perform some joint computation on trade secrets but are
not willing to risk tarnishing their name. While this may be a reasonable
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Figure 5.3: The ideal functionality FPVC with the strong explicit cheat formu-
lation represented as an extensive-form game GPVC rooted at P1. Our goal is
to augment the functionality with a payment scheme such that it is rational
to behave honestly. Note that in this representation, for clarity there are two
distinct leaves when an agent Pi attempts cheating, though in the following
we ‘merge’ the two nodes belonging to nature for simplicity.

assumption in many cases, it is unclear that this works in e.g. an anonymous
setting where the agents cannot be held accountable. Instead, we will use a
payment scheme to prove it is rational for the agents not to cheat. Our plan
is to analyze the information structure induced by the definition of covert
security. We then apply our payment schemes to the resulting game and derive
values for the deposits of the agents.

Secure Rational MPC from PVC

We consider a set of n agents P1, P2, . . . , Pn interacting with the ideal PVC
functionality FPVC. To analyze the interaction using game theory, we need
to be able to give some bounds on the utilities of the agents. In order to
simplify the presentation, we assume the agents are homogeneous, in that they
have the same utility functions. We further disregard the cost of running the
protocol, e.g. transaction fees, such that any aborti gives 0 utility to all agents.
Note that we can always normalize the utilities in a game as this preserves
the total order. As such, we assume an agent receives 1 utility if they send
their input and receive back the correct output. If instead an agent cheats and
is successful, they receive u+ utility, while an agent whose input is revealed
receives u− utility. As FPVC does not explicitly punish agents who are caught
cheating, we assume an agent who is caught cheating receives 0 utility. As in
[12], we are using the strong explicit cheat formulation from [16], so a cheater
who is caught does not learn the inputs of the honest agents, and as such
earns 0 utility. We are not modeling the fact that agents can send incorrect
inputs, for the simple reason that it is impossible for the payment scheme,
in general, to detect this. We assume that agents always send their input
truthfully, or rather their true input is defined to be whatever they send to
the functionality. The corresponding information structure would not be able



90 CHAPTER 5. PAYMENTS

to distinguish the two classes of leaves, the distributions would be linearly
dependent, making it impossible to instantiate the deposits to ensure security.
For some specific applications however, one could imagine a function that
allows the determination of an agent providing the wrong input. It is possible
to augment our model to accommodate this scenario, though it is out of scope
for the present paper.

To make the problem nontrivial, we require that u+ > 1 > 0 > u−. Note
that we are assuming the agents are oblivious to the utility earned by other
agents. This is in contrast to [130] who assume agents strictly prefer that as
few other agents learn the output as possible. This is not to circumvent their
impossibility result, as this is accomplished by quasi-linearity by allowing the
deposits to alter the total order of outcomes. Rather, it is for simplicity of
exposition, though it would be interesting as future work to augment our model
to a setting where we explicitly specify how utility an agent loses by other agents
also learning the output. We represent the interaction as an extensive-form
game GPVC, and draw the corresponding tree. An illustration of the game tree
can be found in Fig. 5.3. Observe that when (1−ε)u+ > 1, the only equilibrium
in the game is for P1 to cheat. Instead, we want all agents to play honestly.
First, we need to define an information structure on the game. We first remark
that the structure of the game is such that only one agent can deviate in any
given strategy profile. This means we can define the following alphabet of
possible outcomes as, Σ = {>, abort1, cheat1, abort2, cheat2, . . . , abortn, cheatn}.
We assume the symbols are ordered left-to-right. Here > is a symbol emitted
when no cheating was detected, and no aborting occurred. Note that this
overloads the notation of aborti and cheati. We now analyze the information
structure induced by the functionality. For simplicity, we will slightly modify
the game tree in Fig. 5.3. Namely, we collapse each subgame corresponding
to a move by nature into a single leaf with expected utility (1− ε)u+. This
allows us to write a single pdf for that leaf. If we instead insist on having
separate leaves, then the columns are no longer linearly independent; hence
Lemma 5.6 does not apply directly; however, it still applies if we replace ‘the
inverse’ with ‘a left inverse’. This needlessly complicates the analysis, hence
the simplifying assumption. If all agents are honest, we reach the outcome
1 and the symbol > is emitted. If some agent Pi aborts, the output of the
honest agents will always be aborti. If instead, an agent attempts to cheat,
with probability ε they are caught and the message cheati is output. If they
are not caught, the symbol > is also emitted. Suppose the leaves of GPVC are
ordered left-to-right in Fig. 5.3, then we can write the information structure
as follows. Note that when ε > 0, all columns are linearly independent, and as
such ΦPVC is invertible.
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ΦPVC =



0 1− ε 0 1− ε · · · 0 1− ε 1
1 0 0 0 · · · 0 0 0
0 ε 0 0 · · · 0 0 0
0 0 1 0 · · · 0 0 0
0 0 0 ε · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 1 0 0
0 0 0 0 · · · 0 ε 0



=



0 1
ε 0 0 0 · · · 0 0

0 0 1 0 0 · · · 0 0
0 0 0 1

ε 0 · · · 0 0
0 0 0 0 1 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 0 · · · 1
ε 0

0 0 0 0 0 · · · 0 1
1 ε−1

ε 0 ε−1
ε 0 · · · ε−1

ε 0



−1

By Lemma 5.6, we can implement any utility matrix E. In order to obtain
(δ+1)-strong game-theoretic security we could for instance define the following:

E =


−δ −δ 0 0 · · · 0 0 1
0 0 −δ −δ · · · 0 0 1
...

...
...

...
...

...
...

0 0 0 0 · · · −δ −δ 1


Any agent who deviates gains an expected utility of −δ, while they gain 1
utility by following the strategy honestly. Note that u∗ = 1, hence the resulting
equilibrium will be individually rational. Also, we only consider deviations by
a single agent as it is not possible for multiple agents to cheat in our model.
In addition, the utility matrix satisfies honest invariance, in that the utility
of the honest strategy profile remains unchanged for all agents. In order to
compute the deposits, we again apply Lemma 5.6 and compute the appropriate
payments:

ΛPVC = (U− E)Φ−1
PVC =



0 u++δ
ε δ u−

ε 0 · · · u−

ε 0

0 u−

ε 0 u++δ
ε δ · · · u−

ε 0

0 u−

ε 0 u−

ε 0 · · · u−

ε 0

0 u−

ε 0 u−

ε 0 · · · u−

ε 0
...

...
...

...
...

...
...

0 u−

ε 0 u−

ε 0 · · · u++δ
ε δ
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We now briefly analyze the resulting payment scheme. We note that when
> is emitted, all agents are repaid their deposits in full. When the symbol
aborti is emitted, the agent Pi loses part of their deposit, while all other agents
are repaid their deposit in full. Finally, when cheati is emitted, the agent Pi

loses u++δ
ε , while each Pj for j 6= i loses u−

ε . Note that we assume u− < 0,
meaning Pi actually gains money from the payment scheme, i.e. receive back
more than they initially deposited. In order for the payment scheme to not
mint new money, we need that u++δ

ε ≥ − (n−1)u−

ε . That is, we must have that
δ ≥ −(u++(n− 1)u−) ≥ 0 for the payment scheme to be budget balanced. In
other words, there is only sufficient funds left over to compensate the honest
agents, if the desired level of security is sufficiently high (and hence the deposits
are large). As ε < 1 and δ ≥ 0, we have u++δ

ε > δ. This means we get a
deposit of size λ∗i = u++δ

ε . Note that the argument is fairly easy to adapt to
the non-homogeneous setting, where we would instead get λ∗i =

u+
i +δ
ε , where

u+i is the utility gained by agent Pi when successful in cheating. This shows
the following result.

Theorem 5.12 (Rational MPC). Let f be a public function and let P1, P2, . . . , Pn

be a set of rational agents with the following utility function: namely, each
Pi earns 1 utility by learning the output of the function, and u+i utility from
learning the inputs of the other agents, while they gain u−i utility from another
agent learning their input. Then for sufficiently large δ, f can be computed with
δ-strong game-theoretic security with black-box access to any ε-deterrent PVC
protocol, using a budget balanced payment scheme where Pi makes a deposit of
size (u+i + δ − 1)/ε.

In the next section, we show a general lower bound on the maximum deposit
of any budget balanced payment scheme, namely of size Ω(1+ δ

√
n/|Σ|). Note

that this matches asymptotically the deposits in our MPC protocol, assuming
the PVC protocol is fixed (and hence ε, n, |Σ| are all constant).

5.4 A Lower Bound on the Size of Payments

In this section we prove a lower bound on the size of the largest payment
necessary to achieve game-theoretic security. We show that the largest deposit
must be linear in the security parameter ε, as well as linear in some of the
utilities in the game. To establish our bound, we use properties of matrix norms.
We give a brief recap of matrix norms for the purpose of self-containment and
refer to [119] for more details. We say a mapping ‖·‖ : Rm×n → R is a matrix
norm if it satisfies the following properties for all matrices A,B ∈ Rm×n, and
every scalar α ∈ R.

1. (Positivity). ‖A‖ ≥ 0, and ‖A‖ = 0 iff A = 0.
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2. (Homogeneity). ‖αA‖ = |α| ‖A‖.

3. (Subadditivity). ‖A + B‖ ≤ ‖A‖+ ‖B‖.

We denote by ‖·‖p the matrix norm induced by the Lp norm ‖·‖p on vector
spaces, and is defined as

‖A‖p = sup
x6=0,‖x‖2=1

‖Ax‖p

If in addition, it holds that,

‖AB‖ ≤ ‖A‖ · ‖B‖ ,

we say ‖·‖ is submultiplicative. It can be shown that ‖·‖p is submultiplicative
for any value of p. Some special cases that we will need are p = 1, 2,∞ which
can be characterized as follows. The quantity ‖A‖1 equals the maximum
absolute column sum of the columns of A, while the quantity ‖A‖∞ gives the
maximum absolute row sum of the rows of A. Our lower bound is established
by noting that we know these sums for the matrices used in our framework.
An example of a matrix norm that is not submultiplicative is the max norm,
‖A‖max = maxi,j |Aij |. We will need the fact that all matrix norms are
equivalent up to scalar multiple, in the sense that each pair of matrix norms
‖·‖a , ‖·‖b are related by α ‖A‖a ≤ ‖A‖b ≤ β ‖A‖a , for some constants α, β ∈ R.
For our purposes, we need the following bounds:

‖A‖2√
mn
≤ ‖A‖max ≤ ‖A‖2 (5.4)

1√
m
‖A‖1 ≤ ‖A‖2 ≤

√
n ‖A‖1 (5.5)

1√
n
‖A‖∞ ≤ ‖A‖2 ≤

√
m ‖A‖∞ (5.6)

Establish the lower bound. Let G be a fixed game with information structure
〈Σ,Φ〉. Let (δ, t) be fixed, and let Ψ(t), δ(t) be the corresponding constraints.
We denote by α(t) the number of rows in Ψ(t). Now, let Λ be any feasible
payment scheme. We have already seen that any such Λ is a solution to the
following equation:

Ψ(t)ΛΦ ≤ Ψ(t)U− δ(t) (5.7)

Applying Eqs. (5.4) and (5.7) and the properties of ‖·‖2, we establish the
following bound:

‖Λ‖max ≥
1√
n |Σ|


∥∥∥Ψ(t)U

∥∥∥
2
+
∥∥∥δ(t)∥∥∥

2∥∥∥Ψ(t)
∥∥∥
2
· ‖Φ‖2

 (5.8)
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Each row of δ(t) is filled with δ, so the resulting absolute row sum is δn.
Similarly, each row of Ψ(t) contains exactly one 1 and one -1, so each absolute
row sum is 2. Finally, each column of Φ is a pdf, so its absolute row sum
is 1. Combining these insights with Eqs. (5.5) and (5.6) and substituting in
Eq. (5.8) gives the following bound:

‖Λ‖max ≥
1√
n |Σ|


∥∥∥Ψ(t)U

∥∥∥
2
+
√
α(t)δn

2
√
α(t) ·

√
|Σ|

 =
1

2 |Σ|

δ√n+

∥∥∥Ψ(t)U
∥∥∥
2√

nα(t)


We note that in general, there is not much to say about

∥∥∥Ψ(t)U
∥∥∥
2
, as U can

lie in the kernel of Ψ(t). This occurs if U already establishes exact δ-strong
t-robust game-theoretic security.

Note that the bound, strictly speaking, is a bound on the largest absolute
deposit necessary to achieve security, while we are interested in bounding the
largest positive deposit, denoted instead by Λ∗

max. If the game already is secure,
the bound for the largest deposit should be zero, while the above bound is
positive for any δ > 0. Indeed, ‖Λ‖max 6= Λ∗

max iff we can pay more to an
agent to misbehave and still retain security than what we have to pay another
agent to behave properly. We note that this depends on the structure of the
game and the intended strategy profile. In particular, it is independent of
the security parameter. For this reason, we denote by ∆

(t)
G (s∗) the minmax

deposit required to obtain 0-strong t-robust game-theoretic security. We note
that ∆

(t)
G > 0 iff the game is not secure for any δ ≥ 0, while ∆

(t)
G ≤ 0 iff the

game is already secure for δ = 0. We note that by definition, ∆(t)
G is a trivial

lower bound on the size of the maximum deposit. We combine this with the
above bounds to yield the following lower bound:

Theorem 5.13. Let G be a game on n agents with an information structure
〈Σ,Φ〉, and let s∗ be the intended strategy profile. If Λ is budget balanced and
ensures δ-strong t-robust game-theoretic security, then the maximum deposit
must satisfy Λ∗

max ≥ ∆
(t)
G (s∗) + Ω

(
δ
√
n

|Σ|

)
.



Chapter 6

Commitments
“Mr. President, it is not only possible, it is essential. That
is the whole idea of this machine, you know. Deterrence
is the art of producing in the mind of the enemy... the
fear to attack. And so, because of the automated and
irrevocable decision making process which rules out human
meddling, the doomsday machine is terrifying. It’s simple
to understand. And completely credible, and convincing.”

Dr. Strangelove

We now turn to consider an important aspect of deploying smart
contracts in practice on permissionless blockchains such as
Ethereum [258]. In these permissionless systems, agents can
themselves deploy smart contracts without prior authorization

by buying the tokens required to execute the contract. This changes fundamen-
tal game-theoretic assumptions about rationality: in particular, it might be
rational for an agent to deploy a contract that commits them to act irrationally
in certain situations to make credible otherwise non-credible threats. This
gives rise to complex games in which agents can commit to strategies, that in
turn depend upon other agents’ committed strategies. Reasoning about such
equilibria is important when considering games that are meant to be played on
a blockchain, since the agents - at least in principle - always have the option
of deploying such contracts. In the literature, this is known as a Stackelberg
equilibrium where a designated leader commits to a strategy before playing
the game. In general, because of first-mover advantage, being able to deploy a
contract first is never a disadvantage, since an agent can choose to deploy the
empty contract that commits them to nothing. It is well-known that it is hard
to compute the Stackelberg equilibrium in the general case [171], though much
less is known about the complexity when there are several of these contracts in
play: when there are two contracts, the first contract can depend on the second
contract in what is known as a reverse Stackelberg equilibrium [22, 135, 243].

95
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This is again strictly advantageous for the leader since they can punish the
follower for choosing the wrong strategy. In this chapter, we present a model
that generalizes (reverse) Stackelberg games, which we believe captures these
types of games and which may be of wider interest. In practical terms, we
believe that our model is of interest when analyzing distributed systems for
game-theoretic security in settings where the agents naturally have the ability
to deploy smart contracts.

Attribution. This chapter is based entirely on the paper [129], with most
of the text (including this introduction) taken (almost) verbatim from [129],
with only minor modifications to the formatting and the prose. Fig. 6.3 was
partially redrawn for this thesis. Algorithm 2 was reformatted.

Our Results

We propose a game-theoretic model for games in which agents have shared
access to a blockchain that allows the agents to deploy smart contracts to act
on their behalf in the games. Allowing an agent to deploy a smart contract
corresponds to that agent making a ‘cut’ in the tree, inducing a new expanded
game of exponential size containing as subgames all possible cuts in the game.
We show that many settings from the literature on Stackelberg games can be
recovered as special cases of our model, with one contract being equivalent
to a Stackelberg equilibrium, and two contracts being equivalent to a reverse
Stackelberg equilibrium. We prove bounds on the complexity of computing an
SPE in these expanded trees. We prove a lower bound, showing that computing
an SPE in games of imperfect information with k contracts is ΣP

k -hard by
reduction from the true quantified Boolean formula problem. For k = 1,
it is easy to see that a contract can be verified in linear time, establishing
NP-completeness. In general, we conjecture ΣP

k -completeness for games with
k contracts, though this turns out to reduce to whether or not contracts can
be described in polynomial space. For games of perfect information with an
unbounded number of contracts, we also establish PSPACE-hardness from a
generalization of 3-coloring. We show an upper bound for k = 2 and perfect
information, namely that computing an SPE in a two-contract game of size
m with ` terminal nodes (and any number of agents) can be computed in
time O(m`). For k = 3, the problem is clearly in NP since we can verify a
witness using the algorithm for k = 2, and we conjecture the problem to be
NP-complete.

Smart Contract Moves

We now give our definition of smart contracts in the context of finite games.
We add a new type of node to our model of games, a smart contract move.
Intuitively, whenever an agent has a smart contract move, they can deploy
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Contracts agents Information Strategies Lower bound Upper bound
0 2 perfect pure P-hard [239] O(m) [194]

0 2 imperfect mixed PPAD-complete [61, 81]
1 2 perfect pure P-hard [239] O(m`) [41]

1 2 perfect mixed NP-complete [172]

1 2 imperfect - NP-complete [172]
2 2 perfect pure P-hard [239] O(m`) [Theorem 6.9]
3 3 perfect pure Conjectured NP-hard NP [Theorem 6.9]
k 2 + k imperfect pure Σp

k-hard [Theorem 6.7] ?
unbounded - perfect pure PSPACE-hard [Theorem 6.10] ?

Figure 6.1: An overview of some existing bounds on the complexity of com-
puting an SPE in extensive-form games and where our results fit in. Here, m
is the size of the tree, and ` is the number of terminal nodes.

a contract that acts on their behalf for the rest of the game. The set of
all such contracts is countably infinite, but fortunately, we can simplify the
problem by considering equivalence classes of contracts that “do the same
thing”. Essentially, the only information relevant to other agents is whether or
not a given action is still possible to play: it is only if the contract dictates
that a certain action cannot be played, that we can assume a rational agent
will not play it. In particular, any contract which does not restrict the moves
of an agent is equivalent to the agent not having a contract. Such a restriction
is called a cut. A cut c(i) for agent Pi is defined to be a union of subtrees
whose roots are children of Pi-nodes, such that: (1) every node in T \ c(i) has
a path going to a leaf; a cut is not allowed to destroy the game by removing
all moves for an agent, and (2) c(i) respects information sets, that is it ‘cuts
the same’ from each node in the same information set.

In other words, deploying a smart contract corresponds to choosing a cut in
the game tree. This means that a smart contract node for agent Pi in a game
T is essentially syntactic sugar for the expanded tree that results by applying
the set of all cuts c(i) to T and connecting the resulting games with a new
node belonging to Pi at the top. Computing the corresponding equilibrium
with smart contracts then corresponds to the SPE in this expanded tree. Note
that this tree is uniquely determined. See Fig. 6.2 for an example. We use
the square symbol in figures to denote smart contract moves. When a game
contains multiple smart contract moves, we expand the smart contract nodes
recursively in a depth-first manner using the transformation described above.

6.1 Contracts as Stackelberg Equilibria

As mentioned earlier, the idea to let an agent commit to a strategy before
playing the game is not a new one: in 1934, von Stackelberg proposed a model
for the interaction of two business firms with a designated market leader [251].
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Figure 6.2: Expanding a smart contract node for a simple game. The square
symbol is a smart contract move for agent P1. We compute all P1-cuts in the
game and connect them with a node belonging to P1. The first coordinate is
the leader payoff, and the second is the follower payoff. The dominating paths
are shown in bold. We see that the optimal strategy for P1 is to commit to
choosing (−∞,−∞) unless P2 chooses (1,−1).

The market leader holds a dominant position and is therefore allowed to commit
to a strategy first, which is revealed to the follower who subsequently decide
on a strategy. The resulting equilibrium is called a Stackelberg equilibrium. In
this section we show that the Stackelberg equilibrium for a game with leader
P1 and follower P2 can be recovered as a special case of our model where P1

has a smart contract. We use the definition of strong Stackelberg equilibria
from [45, 167]. We note that since the games are assumed to be in generic
form, the follower always has a unique response, thus making the requirement
that the follower break ties in favor of the leader unnecessary.

Let T be a game tree. A path p ⊆ T is a sequence of nodes such that
for each j, pj+1 is a child of pj . If p is a path, we denote by p(i) ⊆ p the
subset of nodes owned by agent Pi. Now suppose T has a horizon of h. We let
p = (pj)

h
j=1 ⊆ T denote the dominating path of the game defined as the path

going from the root p1 to the terminating leaf ph in the SPE of the game.

Definition 6.1 (Stackelberg Equilibrium). Let i ∈ [n] be the index of an agent,
and let f(si) be the best response to si for agents other than Pi. We say
(s∗i , f(s

∗
i )) is a Stackelberg equilibrium with leader Pi if the following properties

hold true:

• Leader optimality. For every leader strategy si, ui(s∗i , f(s∗i )) ≥ ui(si, f(si)).
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• Follower best response. For every j 6= i, and every s−i, uj(s∗i , f(s∗i )) ≥
uj(s

∗
i , s−i).

Proposition 6.2. The Stackelberg equilibrium with leader Pi is equivalent to Pi

having a smart contract move.

Proof. We show each implication separately:

⇒ An SPE in the expanded tree T induces a Stackelberg equilibrium in the
corresponding Stackelberg game where Pi commits to all moves in p(i).
It is not hard to see that the follower best response f(s∗i ) is defined by
the SPE of the subgame arising after Pi makes the move p1 choosing the
contract in T .

⇐ A Stackelberg equilibrium induces an SPE in the expanded tree T with the
same utility: let (s∗i , f(s

∗
i )) be a Stackelberg equilibrium, observe that

s∗i corresponds to a cut c(i) ⊆ T where Pi cuts away all nodes in T not
dictated by s∗i . By letting the first move p1 of Pi correspond to c(i), the
best follower response f(s∗i ) is the SPE in the resulting subgame, and
hence u(p) = u(s∗i , f(s

∗
i )).

Multi-leader/multi-follower contracts

Several variants of the basic Stackelberg game has been considered in the
literature with multiple leaders and/or followers [177, 227]. We can model this
using smart contracts by forcing some of the contracts to independent of each
other: formally, we say a contract is independent if it makes the same cut in
all subgames corresponding to different contracts. It is not hard to see that
multiple leaders can be modelled by adding contracts for each leader, where
the contracts are forced to be independent.

Reverse Stackelberg Contracts

The reverse Stackelberg equilibrium is an attempt to generalize the regular
Stackelberg equilibrium: here, the leader does not commit to a specific strategy
a priori, rather they provide the follower with a mapping f from follower
actions to best response leader actions, see e.g. [17, 232] for a definition in the
continuous setting. When the follower plays a strategy s−i, the leader plays
f(s−i). This is strictly advantageous for the leader since as pointed out in
[135], they can punish the follower for choosing the wrong strategy.

In the following, if p is a path of length `, we denote by Gs(p) the subgame
whose root is p`.

Definition 6.3. Let i be the index of the leader, and −i the index of the follower.
We say (f(s∗−i), s

∗
−i) is a reverse Stackelberg equilibrium with leader i if the

following holds for every leader strategy si and follower strategy s−i, it holds:
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• Leader best response: ui(f(s∗−i), s
∗
−i) ≥ ui(si, s∗−i).

• Follower optimality: u−i(f(s
∗
−i), s

∗
−i) ≥ u−i(f(s−i), s−i).

Proposition 6.4. The reverse Stackelberg equilibrium for a two-agent game with
leader Pi is equivalent to adding two smart contract moves to the game, one
for Pi, and another for P−i (in that order).

Proof. We show each implication separately:

⇒ The SPE in the expanded tree induces a reverse Stackelberg equilibrium:
for every possible follower strategy s−i, we define f(s−i) as the leader
strategy in the SPE in the subgame Gs(〈p1, s−i〉) after the two moves,
where we slightly abuse notation to let s−i mean that P−i chooses a cut
where their SPE is s−i. Leader best response follows from the observation
that p1 corresponds to the optimal set of cuts of Pi moves in response to
every possible cut of of P−i moves.

⇐ A reverse Stackelberg equilibrium induces an SPE in the expanded tree:
let (f(s∗−i), s

∗
−i) be a reverse Stackelberg equilibrium and let f be the

strategy of Pi in the reverse Stackelberg game, then Pi has a strategy
in the two-contract game with the same utility for both agents: namely,
Pi’s first move is choosing the subgame in which for every second move
s−i by P−i they make the cut f(s−i).

Having defined our model of games with smart contracts, we turn to study
the computational complexity of computing equilibria in such games. This
section is entirely based on [129], though figures/tables have been redrawn for
this thesis. Note that we can always compute the equilibrium by constructing
the expanded tree and performing backward induction in linear time. The
problem is that the expanded tree is large: the expanded tree for a game of
size m with a single contract has 2O(m) nodes since it contains all possible
cuts. For every contract we add, the complexity grows exponentially. This
establishes the rather crude upper bound of ΣEXP

k for computing SPE in games
with perfect information and k contracts. The question we ask if we can do
better than traversing the entire expanded tree.

In terms of feasibility, our results are mostly negative: we show a lower
bound that computing an SPE, in general, is infeasible for games with smart
contracts. We start by considering the case of imperfect information where
information sets allow for a rather straightforward reduction from CircuitSAT
to games with one contract, showing NP-completeness for single-contract
games of imperfect information. This generalizes naturally to the k true
quantified Boolean formula problem (k-TQBF), establishing ΣP

k -hardness for
games of imperfect information with k contracts. On the positive side, we
consider games of perfect information where we provide an algorithm for games
and two contracts that runs in time O(m`). However, when we allow for
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an unbounded number of contracts, we show the problem remains PSPACE-
complete by reduction from the generalization of 3-coloring described in
[39]. We conjecture the problem to be NP-complete for three contracts.

6.2 Imperfect Information, One Contract,
NP-completeness

We start by showing NP-completeness for games of imperfect information by
reduction from CircuitSAT. We consider a decision problem version of SPE:
namely, whether or not a designated agent can obtain a utility greater than
the target value.

Reduction. Let C be an instance of CircuitSAT. Note that we can start from
any complete basis of Boolean functions, so it suffices to suppose the circuit
C consists only of NAND with fanin 2 and fanout 1. We will now construct a
game tree for the circuit: we will be using one agent to model the assignment
of variables, say agent 1. The game starts with a contract move for agent
1 who can assign values to variables by cutting the bottom of the tree: we
construct the game such that agent 1 only has moves in the bottom level of
the tree. In this way, we ensure that every cut corresponds to assigning truth
values to the variables. We adopt the convention that a payoff of 1 for agent 1
is true (>), while a payoff of 0 for agent 1 is false (⊥). All nodes corresponding
to occurrences of the same variable get grouped into the same information set,
which enforces the property that all occurrences of the same variable must be
assigned the same value.

For the NAND-gate, we proceed using induction: let TL, TR be the trees
obtained by induction, we now wish to construct a game tree gadget with
NAND-gate logic. To do this we require two agents which we call agent 2 and
agent 3. Essentially, agent 2 does the logic, and agent 3 converts the signal to
the right format. The game tree will contain multiple different utility vectors
encoding true and false, which vary their utilities for agents 2 and 3. Each
NAND-gate has a left tree and a right tree, each with their own utilities for
true and false: ⊥L,⊥R;>L,>R. The gadget starts with a move for agent 3
who can choose to continue the game, or end the game with a true value >′. If
they continue the game, agent 2 has a choice between false ⊥′ or playing either
TL or TR. To make the gadget work like a NAND-gate we need to instantiate
the utilities to make backward induction simulate its logic. The idea is to make
agent 2 prefer both ⊥L and ⊥R to ⊥′, which they, in turn, prefer to >L and
>R. As a result, agent 2 propagates ⊥′ only if both TL, TR are true, otherwise,
it propagates ⊥L or ⊥R. Finally, we must have that agent 3 prefers >′ to both
⊥L and ⊥R, while they prefer ⊥′ to >′,>L and >R. This gives rise to a series
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Figure 6.3: The basic structure of the reduction. agent 1 has a smart contract
that can be used to assign values to the variables. The dashed rectangle
denotes an information set and is used when there are multiple occurrences of a
variable in the circuit. On the right, we see the NAND-gate gadget connecting
the left subgame TL and the right subgame TR. We implement the gadget by
instantiating the utility vectors such that agent 2 chooses ⊥′ if only if both
TL and TR propagate a utility vector encoding true.

of inequalities:

⊥L
2 > ⊥′

2 > >L
2 >′

3 > ⊥L
3 ⊥′

3 > >L
3 ⊥′

3 > >′
3

⊥R
2 > ⊥′

2 > >R
2 >′

3 > ⊥R
3 ⊥′

3 > >R
3

We can instantiate this by defining >,⊥. For the base case corresponding to a
leaf, we let ⊥ = (0, 1, 0),> = (1, 0, 0). We then define recursively:

>′ =
(
1, 0, 1 + max(>L

3 ,>R
3 )
)

⊥′ =

(
0,

min(⊥L
2 ,⊥R

2 ) + max(>L
2 ,>R

2 )

2
, 2 + max

(
>L

3 ,>R
3

))
It is not hard to verify that these definitions make the above inequalities hold
true. As a result, the gadget will propagate a utility vector corresponding to
true if and only if not both subtrees propagate true.

Theorem 6.5. Computing an SPE in three-agent single-contract games of
imperfect information is NP-complete.

Proof. We consider the decision problem of determining whether or not in the
SPE, agent 1 has a utility of 1. By construction of the information sets, any
strategy is a consistent assignment of the variables. It now follows that agent
1 can get a payoff > 0 if and only if there is an assignment of the variables
such that the output of the circuit is true. This shows NP-hardness. Now, it
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is easily seen that this problem is in NP, since a witness is simply a cut that
can be verified in linear time in the size of the tree. Completeness now follows
using our reduction from CircuitSAT.

Remark 6.6. Our reduction also applies to the two-agent non-contract case by
a reduction from circuit value problem. This can be done in logspace since all
the gadgets are local replacements. In doing so, we reestablish the result of
[239], showing that computing an SPE on two-agent games is P-complete.

6.3 Imperfect Information, k Contracts, ΣP
k -hardness

In this section, we show that computing the SPE in a game with k contract
moves is ΣP

k -complete, in the general case with imperfect information. General-
izing the previous result of NP-hardness to k contracts is fairly straightforward.
Our claim is that the resulting decision problem is ΣP

k -hard so we obtain a
series of hardness results for the polynomial hierarchy. This is similar to the
results obtained in [142] where the value problem for a competitive analysis
with k + 1 agents is shown to be hard for ΣP

k .
Formally, we consider the following decision problem with target value V

for a game tree T with k contract agents: let T ′ be the expanded tree with
contracts for agents P1, P2, . . . Pk in ascending order. Can agent P1 make a
cut in T ′ such that their payoff is ≥ V ?

To show our claim, we proceed using reduction from the canonical ΣP
k -

complete problem k-TQBF, see e.g. [108] for a formal definition.

Theorem 6.7. Computing an SPE in 2+k agent games of imperfect information
is ΣP

k -hard.

Proof (sketch). We extend our reduction from Theorem 6.5 naturally to the
quantified satisfiability problem. In our previous reduction, the contract agent
wanted to satisfy the circuit by cutting as to assign values to the variables in
the formula. Now, for each quantifier in ψ, we add a new agent with a contract,
whose moves range over exactly the variables quantified over. The agents have
contracts in the same order specified by their quantifiers. The idea is that
agents corresponding to ∀ try to sabotage the satisfiability of the circuit, while
those corresponding to ∃ try to ensure satisfiability. We encode this in the
utility vectors by giving ∃-agents a utility of 1 in > and 0 utility in ⊥, while
for the ∀-agents, it is the opposite. It is not hard to see that ψ is true, only if
P1 can make a cut, such that for every cut P2 makes, there exists a cut for P3

such that, ..., the utility of P1 is 1. This establishes our reduction.

We remark that it is not obvious whether or not the corresponding decision
problem is contained within ΣP

k . It is not hard to see we can write a Boolean
formula equivalent to the smart contract game in a similar manner as with a
single contract. The problem is that it is unclear if the innermost predicate φ
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can be computed in polynomial time. It is not hard to see that some smart
contracts do not have a polynomial description, i.e. we can encode a string
x ∈ {0, 1}∗ of exponential length in the contract. However, there might be
an equivalent contract that does have a polynomial-time description. By
equivalent, we mean one that has the same dominating path. This means that
whether or not ΣP

k is also an upper bound essentially boils down to whether or
not every contract has an equivalent contract with a polynomial description.

6.4 Perfect Information, Two Contracts, Upper Bound

In this section, we consider two-agent games of perfect information and provide
a polynomial-time algorithm for computing an SPE in these games. Specifically,
for a game tree of size m with ` terminal nodes with two contract agents (and
an arbitrary number of non-contract agents), we can compute the equilibrium
in time O(m`). Our approach is similar to that of [179], in that we compute
the inducible region for the first agent, defined as the set of leaves they are
able to ‘induce’ by making cuts in the game tree.

Let A,B be two sets. We then define the set of outcomes from A reachable
using a threat against agent i from outcomes in B as follows:

threateni(A,B) = {x ∈ A | ∃ y ∈ B. xi > yi}

As mentioned, we will compute the inducible region for the agent with the first
contract, defined as the set of outcomes reachable with a contract. Choosing
the optimal contract is then reduced to a supremum over this region.

Definition 6.8 (Inducible Region). Let G be a fixed game. We denote by R(P1)
(resp. R(P1, P2)) the inducible region of P1, defined as the set of outcomes
reachable by making a cut in G in all nodes owned by P1. R(P1) is a tuple
(u, c1) where u ∈ Rn is the utility vector, and c1 is the contract (a cut) of P1.

Now let G be the game tree in question and let k be a fixed integer. As
mentioned, we assume without loss of generality that G is in generic form,
meaning all non-leaves in G have an out-degree of exactly two and that all
utilities for a given agent are distinct such that the ordering of utilities is
unique. We denote by P1, P2 the agents with contracts and assume that Pi has
the ith contract. We will compute the inducible regions in G for P1 (denoted
S for self ), and for (P1, P2) (denoted T for together) by a single recursive
pass of the tree. In the base case with a single leaf with the label u we have
S = T = {u}. For a non-leaf, we can recurse into left and right child, and join
together the results. The procedure is detailed in Algorithm 2.

Theorem 6.9. An SPE in two-contract games of perfect information can be
computed in time O(m`).
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Data: Extensive-form game G.
Result: Inducible region S for agent 1 (self ); inducible region T for

both agents 1 and 2 (together).
function InducibleRegion(G):

switch G :
case Leaf(u) :

return ({u}, {u})

case Branch(i, GL, GR) :
(SL, TL)← InducibleRegion(GL)
(SR, TR)← InducibleRegion(GR)
if i = 1 then

T ← TL ∪ TR

S ← SL ∪ SR ∪ threaten2(T
L ∪ TR, SL ∪ SR)

else if i = 2 then
T ← TL ∪ TR

S ← threaten2(S
L, SR) ∪ threaten2(S

R, SL)
else

T ← threateni(T
L, TR) ∪ threateni(T

R, TL)
S′ ← threateni(S

L, SR) ∪ threateni(S
R, SL)

S ← S′ ∪ threaten2(T, S
′)

return (S, T )

Algorithm 2: Pseudo-code of the algorithm for computing reverse Stack-
elberg equilibria in games of perfect information. For simplicity, we are
assuming that the game tree is bifurcating and is in generic form.

Proof. First, the runtime is clearly O(m`) since the recursion has O(m) steps
where we need to maintain two sets of size at most `. For correctness, we show
something stronger: let R(P1) be the inducible region for P1 in the expanded
tree and R(P1, P2) be the inducible region of (P1, P2). Now, let (S, T ) =
InducibleRegion(G). Then we show that S = R(P1) and T = R(P1, P2).
This implies that argmaxu∈Su1 is the SPE. The proof is by induction on the
height h of the tree. As mentioned, we assume that games are in generic form.
This base case is trivial so we consider only the inductive step.

Necessity follows using simple constructive arguments: for S and i = 1, then
for every (u, c) ∈ S`, we can form a contract where P1 chooses the left branch
and plays c. And symmetrically for SR. Similarly, for every (u, c1, c2) ∈ TL

and (v, c′) ∈ SL can form a contract where P1 plays c1 in all subgames where
P2 plays c2; and plays c′ otherwise. Then u is dominating if and only if u2 > v2.
Similar arguments hold for the remaining cases.

For sufficiency, we only show the case of i = 1 as the other cases are similar.
Assume (for contradiction) that there exists (u, c1) ∈ R(P1) \ S, i.e. there is a
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P1-cut c1 such that u is dominating. Then,

(u, c1) ∈ (TL ∪ TR) \ (SL ∪ SR ∪ threaten2(T
L ∪ TR, SL ∪ SR))

= {v ∈ (TL ∪ TR) \ (SL ∪ SR) | ∀v′ ∈ SL ∪ SR. v2 < v′
2}

That is, u must be a utility vector that P1 and P2 can only reach in cooperation
in a one of the two sub-games, say by P2 playing c2. However, for every cut
that P1 makes, the dominating path has utility for P2 that is > u2, meaning
P2 strictly benefits by not playing c2. But this is a contradiction since we
assumed u was dominating.

6.5 Perfect Information, Unbounded Contracts,
PSPACE-hardness

We now show that computing an SPE remains PSPACE-complete when consid-
ering games with an arbitrary number of contract agents. We start by showing
NP-hardness and generalize to PSPACE-hardness in a similar manner as we did
for Theorem 6.7. The reduction is from 3-coloring: let (V,E) be an instance
of 3-coloring and assume the colors are {R,G,B}. The intuition behind the
NP-reduction is to designate a coloring agent Pcolor, who picks colors for each
vertex u ∈ V by restricting his decision space in a corresponding move using a
contract. They are the first agent with a contract. This is constructed using a
small stump for every edge e ∈ E with three leaves Ru, Gu, Bu. We also have
another agent Pcheck whose purpose is to ensure no two adjacent nodes are
colored the same. We attach all stumps to a node owned by Pcheck such that
Pcheck can choose among the colors chosen by Pcolor. If Pcolor is able to assign
colors such that no adjacent nodes share a color, then Pcolor maximizes their
utility, however, if no such coloring exists then Pcheck can force a bad outcome
for Pcolor. It follows that Pcolor can obtain good utility if and only if there is a
valid coloring.

Formally, we add six contract agents for every edge in the graph. Specifically,
for every edge (u, v) ∈ E and every color c ∈ {R,G,B}, we introduce two
new contract agents Pu,c and Pv,c who prefer any outcome except cu (resp.
cv) being colored c. That is, if c = R, then the leaf Ru has a poor utility for
Pu,R. We add moves for Pu,c and Pv,c at the top of the tree, such that if they
cooperate, they can get a special utility vector ⊥u,v which has a poor utility for
Pcolor and great utility for Pcheck, though they themselves prefer any outcome
in the tree (except cu, resp. cv) to ⊥u,v. We ensure that Pcheck has a contract
directly below Pcolor in the tree. If no coloring exists, then Pcheck can force
a bad outcome for both Pu,c, Pv,c in all contracts where they do not commit
to choosing ⊥u,v. Specifically, Pcheck first threatens Pu,c with the outcome cu,
and subsequently threatens Pv,c with cv. Though they prefer any other node
in the tree to ⊥u,v, they still prefer ⊥u,v to cu, cv, meaning they will comply
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Pu2,R
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Pu1,R

...
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· · · Pcolor

Run Gun Bun

Pu2,R

>(u1,u2),R ⊥(u1,u2),R

Figure 6.4: The structure of the reduction. First, Pcolor is allowed to assign a
coloring of all vertices. If there is no 3-coloring of the graph, there must
be some vertex (u1, u2) where both vertices are colored the same color c. In
this case, Pcheck can force both cu1 , cu2 , which are undesirable to Pu1,c, resp.
Pu2,c: then in every Pu1,c-contract where they do not commit to choosing Pu2,c,
Pcheck cuts as to ensure cu1 and analogously for P2. It follows that Pcheck can
get ⊥ if and only if the graph is not 3-colored. Then Pcolor can get a different
outcome from ⊥ if and only if they can 3-color the graph.

with the threat. This means Pcolor will receive a poor outcome if the coloring
is inconsistent. It follows that Pcolor will only receive a good payoff if they are
able to 3-color the graph, see e.g Section 6.5 for an illustration.

Theorem 6.10. Computing an SPE in smart contract games of perfect infor-
mation is PSPACE-hard when we allow for an unbounded number of contract
agents.

Proof. Let (V,E) be an instance of 3-coloring. Our above reduction works
immediately for k = 1, showing NP-hardness. To show PSPACE-hardness
we reduce from a variant of 3-coloring as described in [39] where agents
alternately color an edge and use a similar trick as Theorem 6.7 by introducing
new agents between Pcolor and Pcheck.

It remains unclear where the exact cutoff point is, though we conjecture it to
be for three contracts: clearly, the decision problem for three-contract games
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of perfect information is contained in NP as the witness (a cut for the first
contract agent) can be verified by Algorithm 2.

Conjecture 6.11. Computing an SPE for three-contract games is NP-complete.

Compliance with Threats. One problem with our model is that we assume
agents are always able to comply with the threat, which might be realistic
in practice (say due to incompetence). Instead, we can refine the notion of
equilibrium to trembling hand equilibria where the follower might not be able
to respond to the threat, say with probability ε [225]. This has implications
for modeling e.g. smart contract ransomware.

A Hierarchy of Contracts? Designated-verifier non-interactive zero-knowledge
proofs [73, 151, 207] can be used by agents to prove properties of their con-
tracts in zero-knowledge to selected subsets of other agents, which essentially
corresponds to adding information sets to the contracts, such that in addition
to choosing a contract, each agent also chooses a subset of all possible contracts
containing their contract. This is further complicated by letting an agent
prove to other agents what they proved to others. This induces a hierarchy
of equilibria (the ‘NIZK hierarchy’) where agents relay information they were
proven by other agents. It is unknown if all layers of this hierarchy are distinct.



Chapter 7

Threats

“I’m afraid I don’t understand something, Alexei. Is the Premier
threatening to explode this if our planes carry out their attack?”

- President Merkin Muffley

“No sir. It is not a thing a sane man would do. The doomsday
machine is designed to trigger itself automatically.”

- Alexei de Sadeski

We now study the role of smart contract capability in changing
the equilibria of games. This naturally leads us to character-
ize those games that are unaffected by the addition of smart
contracts. We say such games are Stackelberg resilient. In this

chapter, we show various properties of Stackelberg resilience: we analyse a
variety of contracts, and find that only some of them are resilient.

Attribution. This chapter is based on the papers [164, 165]. Most of the
chapter is taken verbatim from [164] (including all the figures), with only minor
modifications to the formatting and the prose. Section 7.4 and all of its figures
is taken verbatim from [165].

109
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7.1 Stackelberg Resilience
Let us now formally what it means for a game to be resilient. We first need to
define algebraically the notion of smart contracts introduced in Chapter 6.

Definition 7.1 (Contract Moves). Let G be an extensive-form game on n agents.
We define Ci(G) as the game that starts with a smart contract move for agent
i whose only subgame is G. Similarly, if P : [m] → [n] is a list of agents of
length m that specifies the order of the contracts, we denote by CP (G) the game
with m contracts belonging to the agents specified by the list.

Generally speaking, being the first agent to deploy a smart contract is
an advantage. As a result, the equilibrium of the game may be sensitive to
the order of the agents in a given list. We call the agent P (1) with the first
contract the leading contract agent. In practice, the order of the agents is
determined by the consensus protocol used by the underlying blockchain and
may be non-deterministic. For the purposes of this paper, we assume the
consensus protocol is agnostic to the agents such that the order is random.
Thus, we say a game is Stackelberg resilient if only if the equilibrium remains
the same for any order of the contracts. An example of a game that is not
Stackelberg resilient is shown in Fig. 7.1. We will now make this notion more
formal.

Definition 7.2 (Equivalent Games). Let G,G′ be two games on n agents. We
say that G and G′ are equivalent, written G ∼= G′, if for every equilibrium s∗

in G (respectively, in G′) there exists an equilibrium s∗′ in G′ (respectively, in
G) such that ui(s∗) = ui(s

∗′) for every i ∈ [n].

Note that this is an equivalence relation. For two equivalent games, for
each equilibrium in either game, there is an equilibrium in the other game with
the same payoffs. This implicitly means that we regard any two outcomes with
the same utility vector as equivalent. While this is not necessarily the case
in general, it will be the case for the types of games we consider. Namely, in
our case we would have G as an extensive-form game in generic form, meaning
that all its utility vectors are distinct, and G′ = CP (G) the same game with
contracts in the order specified by P . In the game G′, we will have multiple
copies of each utility vector from G, however all its appearances represent the
‘same’ underlying leaf from the game G.

Definition 7.3 (Stackelberg Resilience). A game G is said to be Stackelberg
k-resilient for an integer k > 0 if, for any list P of k distinct agents, it holds
that CP (G) ∼= G. We say G is (full) Stackelberg resilient if it is Stackelberg
n-resilient.

If the SPE of a game is unique and labeled with some utility vector u ∈ Rn,
then side-contract resilience says that every SPE in the expanded tree also has
to be labeled with u.
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i : −∞
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i : 0
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]
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i : 1
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Figure 7.1: An example of a game that is not 1-resilient. agent j has a coin
that they can choose to give to agent i. agent i is subsequently given the
option to trigger a doomsday machine. Without contracts, the SPE is the node
(0, 1) where agent j keeps the coin because the doomsday machine is an empty
threat. However, when agent i has a contract, they can commit to detonating
the doomsday machine if they do not receive the coin, thus changing the SPE
to (1, 0). Such an equilibrium is called a Stackelberg equilibrium.

Note that in this definition, we require the list P to consist of distinct
agents (i.e. P is injective). If this were not the case, (k + 1)-resilience would
trivially imply k-resilience for the uninteresting reason that adding contracts
for a fixed agent is an idempotent operation, i.e. the same agent having two
nested contracts is equivalent to them having only the topmost contract. Also
note that if a game is not Stackelberg resilient, there exists a Stackelberg attack
that some agent can deploy to obtain better utility (or force worse utility for
others) as compared to the situation without contracts. Only Stackelberg
resilient games are not susceptible to Stackelberg attacks.

There are a few observations that we can see immediately. First, if every
agent has the same most preferred outcome and this outcome is the SPE of
the original game, there cannot be a viable attack and the game is trivially
resilient. We also observe that if an agent has the last contract and their only
node is the root of the original game tree, then the choice of contract and the
choice of move ‘collapse’ and they cannot affect change through commitment to
a contract. We observe that in general, it is hard to reason about Stackelberg
resilience.

Proposition 7.4. If P 6= NP, there is no efficient algorithm to compute Stackel-
berg 1-resilience for games with more than two agents. However, full Stackelberg
resilience can be computed efficiently for two-agent games of perfect information.

Proof (sketch). The first part follows using the same reduction as in the proof
of Theorem 6.5, noting that since agent 1 always moves last and thus have to
play the SPE, the equilibrium of the game does not change by giving either
agent 2 or agent 3 a contract — they obtain their preferred outcome among
the set of feasible outcomes (given that agent 1 always chooses >). Thus, the
game is not 1-resilient if and only if the circuit is satisfiable, which shows
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i : 0
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i : −10j : −10
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k

Figure 7.2: An example of a game that is 1-resilient, but neither 2-resilient
nor 3-resilient. We denote by u` the `th utility vector from left-to-right, for
` = 1 . . . 4.

that computing 1-resilience is NP-hard for three-agent games. For the latter
part, note that by Theorem 6.9, full Stackelberg resilience can be computed
efficiently for games of two agents by invoking InducibleRegion twice, relabeling
the agents in the second invocation.

7.2 Downward Transitivity

It is a natural question to wonder if, given resilience in the case with k contracts,
we have resilience in (k − 1) case, and thus, inductively, for all subsequent
removals of contracts. The contrapositive of this question is also interesting
in its own right: can resilience be restored by adding a contract? What if
this added contract is in the least favorable, last position? Indeed, we need to
address the contrapositive to answer the original question.

Consider a game G0 that is not (k − 1)-resilient. Then some agent has a
Stackelberg attack against the others that results in a better equilibrium for
the attacker. These attacks work by allowing the attacker to commit to a worse
outcome if the others do not comply. Thus, the attacking agent can coerce
the other agents into obeying some threat. We must now ask if there can be
some sort of threat to the threat. As we will illustrate in the following example,
there can indeed be a threat to the threat if the new contract agent gets to
go first. On the other hand, if the new contract agent has the last contract,
they cannot threaten the original threat. To intuitively see why going last
nullifies any potential threat to the threat, recall that the last contract move is
effectively the last move. Thus, if this final kth agent could make a threat, it
cannot commit until it is too late, in some sense ‘keeping the threat a secret’
until all other agents have already made their moves. This means that if the
kth agent makes a threat, they already know whether they will have to play it.

To illustrate this, we introduce the example illustrated in Fig. 7.2. We
label the utility vectors u1, . . . , u4 from left to right for ease of notation. Note
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the following inequalities, which will be useful going forward.

u4i > u3i > u1i > u2i ,

u3j > u1j > u4j > u2j ,

u3k > u2k > u1k > u4k.

The SPE in this game is easy to read off: we can see that if k gets a choice,
they will choose to play right, resulting in u2 and, if j gets a choice, they will
choose left, resulting in u3. Seeing this, agent i will choose right, yielding u3
as the SPE. The addition of just one contract cannot change the equilibrium.
Neither agent j nor k could do better than the SPE and, since i owns the
root, committing to a move and going first are effectively the same. A second
contract can break resilience. If i has the first contract and j the second, we
can have the following contract threat from i:

i: “if agent j does not commit to playing right, I will play left.”

This contract can easily be converted into a cut for agent i: cut away the right
branch in every subgame where agent j did not cut away their left branch.
Moving forward, we will not formally convert the contracts into cuts and trust
that it is clear from the context what is intended.

If j does not comply, then i plays left and k will play right, resulting in u2.
If j does comply, the outcome will be u4, which is a better option for j than
u2. Thus, j must comply. We label this game, with the specific contract order
of i then j, G1. So far, agent k has had no impact on i’s antics as both other
agents know that, should the game come to k’s node, k has no choice but to
play left for u2. In fact, i’s threat is predicated on this.

Both j and k are worse off in G1 as compared to G0. If k gets the first
contract, before those of i and j, the G1 threat can be nullified. agent k
commits to a threat to the threat wherein their contract commits them to
play right if i plays the contract from G1. This means that i’s ‘threat’ results
now u1, not u2, and j would actually prefer u1 to u4. Thus if i deployed the
contract from G1, j would not be threatened into committing the contract
stipulated by i. Now i can infer that if they try the G1 contract as second
contract agent after k, the equilibrium will be u1, which is worse for i than
the old SPE u3, so it would be better to not try the threat and we end up on
u3 again.

However, suppose we allow k only the last contract, yielding the order
i, j, k. This order means that k is still last to move. Intuitively, the reason that
the threat to the threat will not work is that k moves last and cannot commit
to an action that they know will leave them worse off. To make this precise, we
first expand the game tree for first k’s then j’s possible contracts in Fig. 7.3.
As pictured, j first makes a contract move, which can predicate on k’s contract,
but cannot see their move. Next, k can make a contract, with full knowledge
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Figure 7.3: The game Fig. 7.2 expanded with a contract for j and then for
k. All subgames consisting only of moves for j and k have been collapsed
to the SPE. agent j can commit to going L or R depending on whether or
not k commits to L or R. Now suppose we add a contract for agent i at the
beginning. By making appropriate cuts in this tree, agent i can commit to
actions that force j to commit to contract RR. The expanded game with also
a contract for agent i has roughly four orders of magnitude more nodes and
has been omitted for brevity.

of j’s contract. agent j’s contracts are labeled with their commitments based
on whether k commits to left or right, respectively. That is, in contract LL,
agent j commits to playing left regardless of k’s commitment and, in LR, j
commits to left if k does and right if k commits right. For the simplicity
of this illustration, we assume all the contracts fully commit the agents to
actions in all cases. Notice that it is always i’s local SPE to move right, which
would result in u3, the old SPE and the other two’s favorite, in j’s right three
branches. This is not so in RR, but it is not clear that j would ever commit
to that contract, given that the others all appear to offer a better opportunity.

Rather than expand the tree for i, which results in a large graph, we instead
explore the cuts that i can make. First, note that k’s least favorite outcome,
u4, is i’s best. This means that no combination of i’s cuts can be used to
persuade k to move toward u4. For example, if j makes the LR contract, i
could cut away u3 in favor of u1 unless k moves right, but the choice for k,
between u1 and u4 would still see k opting for u1. Instead, i’s best contract
does not take into account k’s contract at all and is as follows:

i: “Unless j commits to RR, I will cut away the right branch.”

This means that when j does commit to RR, i.e. when j commits to i’s
desired u4 regardless of what k commits to, i can be guaranteed u4 if they
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either commit to or play left. For every j contract that is not RR, i commits
to playing left, towards k’s node. With this set up, we now go through the
backwards induction of the other agents, given the knowledge of i’s contract.
Starting with the final agent, k, who has the following position:

k: “Unless j commits to RR, agent i will play toward my node,
giving me a choice between u1 and u2. Among these I prefer
u2. Regardless of whether or not I deploy a contract, if I go, I
will go last, so whichever outcome I commit or play for I will
certainly receive. So, unless agent j commits to RR I will opt
for u2.”

agent j can then make the following inference:

j: “Unless I commit to RR, agent i will play toward agent k,
leaving agent k with only the choice between u1 and u2 and
they will certainly pick u2. If I do commit to RR, then agent
i will play towards my node and I will be obligated to play
u4, regardless of what agent k might commit to. Thus I have
a choice between u2 and u4 and will pick u4 and commit to
obeying the threat.”

Thus j will commit to the RR contract and the game will result in the
same equilibrium as G1. The interesting observation about this situation is
that i’s threat does not depend on k making a specific commitment. Instead,
i is counting on the fact that if k were to make a threat to the threat, as in
the case when k has the first contract, the commitment to that threat comes
after all other agents have made commitments. With this timing, k knows
they certainly will have to follow through with their threat if they make it.
Thus j knows that the help k offered when they had the first contract is no
longer viable and the old threat from G1 still stands.

Definition 7.5 (Downward Transitivity). Stackelberg resilience has the property
of downward transitivity if k-resilience implies `-resilience for all ` ≤ k.

The property of downward transitivity means that if a game is resilient for
some number of contracts, that resilience will still hold with fewer contracts.
We will now show that this property holds. As a warm-up, consider the case of
1-resilience from 2-resilience: here, we claim that omitting the second contract
from a 2-resilient game still yields the same equilibrium. If the game in which
only agent 1 has a contract had a different outcome, there must be at least
one node in G for which the corresponding set I is different. Let G∗ be the
lowest such node and observe that by definition this cannot be a leaf. Suppose
G∗ were owned by 2; given that 2 has no contract, 2 will pick the local SPE
child from IL ∪ IR. It is easy to see that threaten(IL, IR) ⊆ IL ⊆ LL, where
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LL denotes the leaves of the left subtree, and analogously so on the right,
threaten(IR, IL) ⊆ IR ⊆ LR. Since this game is 2-resilient, the optimal choice
for 2 will correspond to both the universal SPE and the 2-contract choice and
therefore also the local SPE. If 2 played their local SPE in the 2-contract case,
any contract they had with regards to that particular node was trivial so the
removal thereof will not affect the potential threats. Given that the IL and
IR are the same, but G∗ is the lowest deviant node, we have a contradiction.
If instead, G∗ is owned by 1, IL ∪ IR will be the same as in the 2-contract
case since IL and IR are the same. Furthermore, the threaten mechanism is
unchanged and 1 may use any inducible leaf to threaten for any leaf below that
node, just as before. Since IL and IR are the same by assumption, there are no
new threats to make. Thus I is unchanged and we again have a contradiction.
Thus removing the second contract in a 2-resilient game will not change the
equilibrium. Applying this to both orders of contract arrangement gives the
desired result.

Theorem 7.6. Stackelberg resilience is downward transitive.

Proof. We show the contrapositive: assume there is game G0 which is not
(k − 1)-resilient, then we claim it is also not k-resilient. We can assume w.log.
that G0 is in generic form. Let uSPE,0 be the utility vector of the subgame
perfect equilibrium. We know that G0 is not (k − 1)-resilient, so there is a
list P of (k − 1) agents such that giving these agents contracts in the order
specified by P results in a utility vector uSPE,1 6= uSPE,0. Let G1 be the game
that starts with these contract moves and ends with G0 (see Fig. 7.4). Let
I ⊆ P be the agents for whom uSPE,1

i > uSPE,0
i , and let J = P \ I be its

complement. We know that both I, J 6= ∅, because if I is empty then we would
not have uSPE,1 6= uSPE,0 and similarly for J .

Now let k ∈ [n] \ P be arbitrary and define the game G2 that starts with
contract moves in the order specified by L, then has a contract move for
agent k, and finally a subgame with G0 (see Fig. 7.4 (b)). Let uSPE,2 be
the utility vector of the SPE. We can assume w.log. that the only agents in
G0 are I ∪ J ∪ {k} (as we can collapse the subgames otherwise). Our claim
is that uSPE,2 6= uSPE,0. If uSPE,2 = uSPE,1 then we are done, so assume
uSPE,2 6= uSPE,1. Now consider a subgame where the root node is owned by k.
Define the local SPE as the subgame perfect equilibrium for this subgame and
call the arrived at utility vector uLSPE . In order for uSPE,2 6= uSPE,1, there
must exist a subgame, the key tree, and its corresponding local SPE, such that
agent k commits to an action that results in a different utility vector (for that
subgame), say uT . By subgame perfection, we must have uTk < uLSPE

k .
Since the equilibrium changed from G0 to G1 there must be some subset of

agents, say P ⊆ J , who committed in G1 to actions that they would not have
played in G0, and that these changes resulted in uSPE,1. These agents have to
have been threatened, as they are now worse off. We know there is a threat
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Figure 7.4: (a) The game G1 as an extensive-form game. The agent p ∈ J at
some point chooses between the subgame that leads to uSPE,1 or the subgame
that leads to the key tree, the subgame in which agent k chooses between
uLSPE and uT . (b) The game G2 as an extensive-form game. The agent
p ∈ J at some point chooses between the subgame that leads to uSPE,2 or the
subgame that leads to the subgame where agent k chooses between uLSPE

and uT . In order for the SPE to have changed from uSPE,1 to uSPE,2, agent k
must have cut away the subgame that corresponds to uLSPE .
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from I against J in G1. If this threat were not uLSPE then the equilibrium
would not change from G1 to G2 by the introduction of the contract for k that
moves from uLSPE to uT in that subgame. Let p ∈ P be any agent who is
being threatened using uLSPE . Assume for simplicity there is only one such p.
In order for uT to nullify the threat of uLSPE , we have to have uTp > uLSPE

p .
Thus, the only disruption that k can affect is to commit to uT . Now, consider
the following contract for I:

I: “I will cut as to necessarily reach the subgame owned by p in
every subgame where p does not commit to uSPE,1; otherwise
I will make the same cut as I did in the contract that resulted
in uSPE,1.”

Consider the choice faced by k. Since they are the last agent with a contract
they can see the actions stipulated in the contracts of all the other agents.
As argued, agent k can either commit to playing towards uLSPE or they can
commit to playing towards uT . If p commits to uSPE,1 then we are done. Then
we know, based on I’s contract, that p will be faced with the choice of the key
tree or uSPE,1. Thus if k commits towards uT , they can infer that p will choose
the key tree since uTp > uSPE,1

p . Thus, k sees that a commitment towards uT
will result in that outcome. Now consider the choice faced by p. If they comply
with I and commit to uSPE,1 they will get it. If they do not comply with I
and play for the key tree, they know that agent k – seeing this contract – will
not commit to uT (as they would prefer uLSPE when given this choice). This
gives p the choice between uLSPE and uSPE,1, for which the latter outcome
is already known to be their best response. Thus, we have demonstrated a
contract for I in which they can prevent going back to the old equilibrium. In
particular, this means that G0 is not k-resilient, as desired.

This can also be viewed as a monotonicity property of the contracts: namely,
that any outcome that is inducible with the use of contracts for some agent, is
still inducible when adding a contract at the end for another agent. We note
that it is not necessary that the G2 equilibrium be the same as the G1. The
addition of a contract for k could easily open up even better opportunities for
the agents that benefited from the G1 contracts — we simply cannot go back
to the G0 SPE.

7.3 Decentralized Commerce

In this section, we demonstrate non-triviality of Stackelberg resilience by
analyzing Contracts 3.1 and 3.3. Both contracts solve a problem in decentralized
commerce where two agents want to exchange a good using a blockchain. As
before, the contracts involve a seller S and a buyer B that want to exchange
an item it for a price of x. We let y denote the value of it to the buyer and x′
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the value to the seller, and assume y > x > x′ > 0. Both contracts are shown
to securely implement honest decentralized commerce with ε-strong game-
theoretic security, for arbitrarily large ε. Note that both contracts are similar
and implement almost the same functionality. However, it turns out that
only one of them is Stackelberg resilient which demonstrates that Stackelberg
resilience is a non-trivial property.

Theorem 7.7. Contract 3.1 is not Stackelberg resilient.

Proof. Label the utility vectors at the leaves of contract, seen as the tree
in Fig. 1(a), uj for j ∈ [4] from left to right, where u1 is the leftmost leaf,
corresponding to strategy send-dispute, and so on across the base of the tree.
Let uji for i ∈ {B,S} be the utility of the buyer and seller at leaf j.

Consider the case where the first agent is S. We apply Algorithm 1 to the
tree and keep track of set I for each node as we move up the tree. At the leaf
level, each leaf is its own set I. The next level up depends on the left and right
child, GL and GR, respectively, of the root. We denote IL and IR to be the
associated sets. Both nodes are owned by the buyer, which is agent 2. It is
easy to see that u2B > u1B, which yields IL = {u2}, and u4B > u3B, which yields
IR = {u4}, as the inducible regions. Moving up the tree, we arrive at the root,
which is owned by the seller. Here the seller can use any of the IL∪ IR utilities
to threaten the buyer into any of the L leaves. Thus the seller can use u4 ∈ IR
to threaten the buyer into u1 as long as y − x − λ > 0, which is allowed for
by the stipulations on parameters in Contract 3.1. So I = {u1, u2, u4}. The
seller has equal utility in u1 and u2 and, since we assume the agents are weakly
malicious and u2B > u1B, the seller will choose u1, which is not the SPE. Thus
the contract is not Stackelberg 2-resilient. If instead B has the first contract,
the SPE and reverse Stackelberg equilibria coincide. Since the buyer owns the
middle level of nodes, we have IL = {u1, u2} and IR = {u3, u4}. At the root,
the buyer can threaten the seller into u1 and u2 with u4 and into u3 with either
element of SL because the seller is weakly malicious. From S = {u1, u2, u3},
the buyer will pick u2, which is the SPE.

Note the S Stackelberg attack would still be viable if we accounted for the
loss of the sale item in u1S and u2S , as is the case in the game from Contract 3.3.
In the full version of the contract in Contract 3.1, which allows agents to
additionally play a garbage string, it can be readily observed that S can
threaten with garbage to get the u1 equivalent regardless of the value of the
deposit λ.

Theorem 7.8. Contract 3.3 is full Stackelberg resilient.

Proof. In keeping with Theorem 7.7, we label the leaves uj , j ∈ [6] from left
to right, with reference to Fig. 1(b). Let ILL be the set associated with left
child of the left child of the root and IRR symmetrically so on the right.
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Suppose first that S is agent 1. Since both nodes at the third level, GLL

and GRR belong to the seller, we have ILL = {u1, u2} and IRR = {u5, u6}. The
next level is comprised of nodes owned by the buyer. On the LHS, the seller
can use u2 to threaten the buyer into u3 and u3 to threaten for u1 because
u1B > u3B > u2B. We have u3B > u2B if y − x > yγ − (x + λ)(1 − γ). Since
γ < 1/2, the desired result is true if y − x > y − (x+ λ)(1− γ). Simplifying
and rearranging yields γ

1−γx < λ, which is a stipulation of Chapter 3. So we
have IL = {u1, u3}. On the RHS, we can readily see u6B > u4B. We also have
u5B > u4B if −x < −(x+ λ)γ. Solving this expression for λ, we have 1−γ

γ x > λ,
which is again required by the contract. So B will always want to move left,
yielding IR = {u5, u6}. At the root, S can threaten using any strategy in
IL∪IR. It is easy to see that the element with the lowest utility for B is u5. We
have already shown that u5B > u4B. Thus I = {u1, u3, u5, u6}∪{u2 | u5B < u2B, },
that is, u2 is in I if u5B < u2B. While it is true that u5B > u2B, it is easier
to see that even if u2 were inducible, it would be a less optimal result for S
compared to u3, a fact easily seen with the observation that γ < 1/2. Of the
remaining choices, it immediate that u1 and u6 will not be optimal strategies
for S. All that is left to show is u3S > u5S . The desired result is true if
x− x′ > xγ − λ(1− γ), which can be rearranged to x > 1

1−γx
′ − λ. Since we

have the assumption that x > x′, the previous statement is true if x > 1
1−γx−λ,

given that the coefficient 1
1−γ must be positive. Solving for λ yields λ > γ

1−γx,
which is a requirement of Chapter 3. Thus, S will pick u5, which is the SPE
found in Chapter 3.

Suppose now that B has the first contract. S owns GLL and GRR and thus
ILL = {u2} because u2S > u1S , which can be easily seen. We have IRR = {u6}
because u6S > u5S , which can readily be seen to be true given the condition
λ > γ

1−γx. It is easy to see that IL = {u2, u3} because u3S is the largest of
the three utilities for S and cannot be used to threaten for any other. On the
RHS, we have an analogous situation; it is immediate that u4 cannot be used
for threats. Thus IR = {u4, u6}. At the root, we notice that neither u4 nor u6
can be used to threaten for u1. Thus, u2, u3, u4, u6 ⊆ I and u1 6∈ I. It is not
clear if u5S > u2S , but we can immediately see that u5 will not be the optimal
choice for B if it is in I. In fact we see that the only possibly positive inducible
choices for B are u2 and u3. We proved u3B > u2B above. Thus B picks u3,
which again coincides with the SPE. Since both arrangements of contracts
yield the SPE, it follows from Theorem 7.9 that the game is full Stackelberg
resilient.

Theorem 7.9. Both contracts are Stackelberg 1-resilient.

Proof. For Contract 3.3, the result follows from Theorems 7.6 and 7.8. For
Contract 3.1, if the sole contract is owned by S, there is no action of the buyer
between when S determines its contract and when S moves. Thus the contract
makes no difference in the game and it reduces to the SPE. By the proof of
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Theorem 7.6, given that the order B-S is 2-resilient, we have that a B-contract
will coincide with the SPE.

In order for a Stackelberg attack to be feasible and worthwhile, there needs
to be a reachable threat and a more desirable outcome for the threatening
agent. In Contract 3.1, we see that threatening not to send is a viable threat
against the buyer, regardless of what the buyer later plays. This can be used
to threaten the buyer into an erroneous dispute resulting in them losing their
deposit. Contract 3.3 has the further mechanism of the oracle, which both
weakens the threat and removes the incentive for S to attempt to instigate a
different outcome. Since the oracle has some error rate, there is a chance that
it punishes S if B untruthfully disputes, thus removing any benefit to S of
the threat. The threat is also no longer viable, that is u5B > u2B, given further
conditions in Contract 3.3. Thus Contract 3.3 frustrates this type of attack
both from the demand prospective and the supply.

7.4 Auctions and Transaction Fee Mechanisms
In this section, we demonstrate the existence of a Stackelberg attack on auctions
and the transaction fee mechanisms that are used by most major blockchains.
This section is entirely based on [165], with only minor modifications to the
text.

Consider n agents participating in an auction with m copies of the same
item. Each agent i receives utility vi > 0 by obtaining one of the copies.
Assume that all vi are distinct and ordered v1 < v2 < · · · < vn. Each agent
places a bid bi ≥ 0 and the m agents with the highest bids receive a copy of
the item, at the cost of paying some function of the bids. If there are multiple
agents with the same bid, the mechanism chooses uniformly at random among
these agents. If m ≥ n then all agents receive a copy of the item, in which case
the optimal strategy for each agent is to bid bi = 0. Thus, we will assume that
n = (1 + α)m for some congestion constant α > 0.

In a first-price auction, an agent pays their own bid which results in
untruthful behavior: it is well-known that the best response for an agent i
is to slightly outbid agent n−m if their valuation exceeds this bid. That is,
agent i will place the following bid.

bi =

{
vn−m + ε if i > n−m,
0 if i ≤ n−m.

(7.1)

Where ε > 0 is some small constant, representing a negligible amount of money.
It is not hard to see that this bidding strategy is indeed an equilibrium (at
least up to ε). Of course, this requires that the agents are able to estimate the
valuations of other agents. In some applications, this might not be a realistic
assumption. Instead, the mechanism can be made truthful by letting each
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agent with a winning bid pay bn−m, a second-price1 auction [248]. In this
case, it can be shown that the proposed mechanism is truthful so that each
agent will bid their valuations [67, 127, 248]. While truthfulness is a desirable
property, these auctions may be vulnerable to collusion [212].

The auction described is also known as a transaction fee mechanism and
is used in blockchains to determine which transactions to include in the next
block of data to be included in the chain [66]. Here, all pending transactions
are public, so it is reasonable to assume agents know the valuations of other
agents. Although blockchains canonically store transactions of cryptocurrency
between different accounts [18, 58, 59], many blockchains have since generalized
this to support arbitrary execution of code, so-called smart contracts [257].
Smart contracts are decentralized programs that run on a virtual machine
implemented by the blockchain. A smart contract maintains state, can transfer
funds between agents, and responds to queries. A smart contract is guaranteed
to be faithful to its implementation by security of the underlying blockchain
[152, 153].

We proceed to study transaction fee mechanisms involving agents who
can universally commit to strategies such as by using smart contracts, either
on the blockchain in question or a parallel one. As demonstrated previously,
this can alter the equilibrium of the game which leads us to ask whether or
not transaction fee mechanisms are vulnerable to these attacks. Indeed, we
show that these commitments drastically change the structure of equilibria for
various types of auctions, thus showing they are vulnerable to a Stackelberg
attack wherein the buyers spontaneously organize to conspire against the
auctioneer. In the attack, some agent commits to a strategy that ensures that
they receive one of the items for free, while the remaining agents enter into a
lottery for the remaining space on the block. The attack benefits all the buyers,
but is detrimental to the auctioneer, who stands to lose most of their revenue.
Note that while blockchains and smart contracts provide a natural setting in
which to study these attacks, in principle the same framework can be used
to analyze any setting in which agents can credibly commit to strategies, e.g.
through reputation or by staking money. Understanding these attacks may also
be important in predicting the behavior of advanced intelligent systems that
have access to the internet (and hence access to a blockchain). We stress that
the effectiveness of this attack is limited to the effectiveness of the commitment
strategy. If the commitments can be undermined, say by the auctioneer, then
so too can the attack be undermined.

An Attack on EIP-1559. We demonstrate the existence of a Stackelberg attack
on the transaction fee mechanism EIP-1559, which is used by Ethereum. This
mechanism is a generalization of first-price auctions intended to fix various

1Technically, the auction should be called a (n−m)th-price auction, or a Vickrey auction;
we stick to second-price for simplicity.
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problems with first-price auctions in the context of transaction fee mechanisms
[212]. By corollary, we show an attack on first-price auctions, which are used as
transaction fee mechanisms in most other blockchains. The attack allows any
agent to ensure they receive the item almost for free, while forcing (most of)
the other agents to participate in a lottery for the remaining items. The attack
works as long as the valuations are concentrated, in the sense that (most of)
the largest values are not too much larger than the middle values. In this case,
each agent voluntarily chooses the lottery because doing so will award them
the item for free at some cost, while in the auction they would have to pay
an amount commensurate with their valuation. If instead the valuations were
spread out, the agents with a high valuation would not participate because
they would be getting the item for a price much lower than their valuation,
but with a degree of uncertainty. This is shown by explicitly demonstrating
a strategy that an agent may commit to for which the equilibrium involves
most agents entering into a lottery as described. The strategy extends also
to second-price auctions. We evaluate the economic efficiency of this new
situation and show that, while the attack benefits all users, it is detrimental
to the auctioneer. This impact on auctioneer suggests that successful and
widespread deployment of the attack would be detrimental to the viability of
running the auctions. Therefore, our analysis is grounds for reevaluation of
the auctions for transaction fee mechanisms. Formally, we define the price
of defiance as the ratio between the utility an agent receives by cooperating
versus the utility they would receive by deviating (or defying the attacker). We
give a probabilistic bound on the price of defiance for the attack. Finally, we
show that the conditions required to apply the attack are natural, in the sense
that they are satisfied with high probability at certain levels of congestion
when the valuations are sampled from two natural distributions.

The problem we study is natural in Web3 systems where agents natively
interact using a blockchain. Thus, the agents are capable of deploying smart
contracts that commit them to placing certain bids. In particular, the setting of
an auction with multiple identical items models the transaction fee mechanisms
that are used by blockchains to determine which transactions to include in
the next block. Our work demonstrates that these mechanisms, in theory, are
vulnerable to these attacks and may be cause for re-evaluation of the use of
auctions in transaction fee mechanisms, at least when the networks are not
too congested. Our work highlights the difficulty in designing smart contracts
and suggests that other smart contracts that have already been deployed on
major blockchains may be susceptible to Stackelberg attacks.

Properties of Transaction Fee Mechanisms. In recent years, there has been
increased interest in analyzing blockchain transaction fee mechanisms using
techniques from classic mechanism design. A line of work, [166, 212], identifies
three desiderata of such mechanisms:
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1. user-incentive compatibility (UIC). The users are incentivized to bid
truthfully;

2. miner-incentive compatibility (MIC). The miners are incentivized to
implement the mechanism as prescribed;

3. off-chain agreement proofness (OCA proofness). No coalition of miners
and users can increase their joint utility by deviating from the mechanism.

In [212], Roughgarden shows that EIP-1559 satisfies MIC and OCA proofness
when the block size is large and shows that it is not UIC, in the sense that
users may benefit by bidding strategically. Here, OCA proofness means that
the users and the miner cannot benefit by agreeing to off-chain payments
and thus captures a specific type of commitment to strategies. Chung and
Shi [66] show that no mechanism can simultaneously be UIC and 1-OCA proof.
These results are shown in a model where agents cannot universally commit to
strategies, and indeed we show that, arguably, neither of these three properties
hold in a model where the agent can universally commit to strategies.

Modeling of Auctions. We will consider a set of n transactions competing for
space on a block of size m. We assume for simplicity that each transaction is
owned by exactly one agent, which we identify with the integers {1, 2, . . . , n}.
Each agent i has a valuation vi > 0 of their transaction, which is the utility they
gain by having their transaction included in the block for free. We assume the
agents are rational, risk-neutral, and have a quasi-linear utility functions. We
will take each vi to be sampled i.i.d. from some known underlying distribution
D. It will be convenient to assume that agents know each others’ valuations
precisely, i.e. we assume the values v1, v2, . . . , vn are public and known to all
the agents. Although this assumption is false in practice, by fixing D, the
agents can mostly infer the valuations of the other agents, as these values
tend to be concentrated around their expectations (if the number of agents
is sufficiently large). This approach is used in practice on Ethereum, where
several services provide tip estimations based on the current network congestion
[92].

We assume each agent is capable of deploying a smart contract capable of
bidding on their behalf, and that can condition on the smart contracts deployed
by the other agents. To formalize this, we use the model of Chapter 6. First,
fix some extensive-form representation of the sealed-bid auction, which could
be done as follows: (1) choose an arbitrary order of the n agents, (2) construct
the n-horizon game with agents in the specified order and where each layer
sees the corresponding agent make a bid, which is born out in the ensuing
subgame, (3) add information sets to ensure agents are not aware of the bids
made by the other agents, (4) add utility vectors corresponding to the type of
auction (first-price, second-price, etc.). Then, add ‘smart contract moves’ to
the top of the game tree for each agent. These moves are special nodes that are
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syntactic sugar for the larger ‘expanded tree’ that results from computing all
appropriate cuts in the game tree and reattaching them with a node belonging
to that agent. Expanding these moves in a bottom-up fashion yields a natural
way for contracts to condition on the contracts deployed by other agents and is
shown to generalize (reverse) Stackelberg equilibria. For more details, we refer
to Chapter 6, though we trust that the intuitive understanding of ‘contracts
that depend on other contracts’ suffices for the purposes of this work. An
auction that is weakly strategically equivalent (i.e. the equilibrium payoffs are
equal) to itself with smart contract moves is said to be Stackelberg resilient.

We now give our model of the transaction fee mechanism EIP-1559 used
by Ethereum since 20212. It generalizes first-price auctions by including a
base fee B ≥ 0 that each agent has to pay, which is burned. The base fee is
continuously adjusted by the network to balance the demand to ensure each
block is half full (in expectation). A first-price auction with m identical items
is retained as a special-case when B = 0.

Mechanism 7.10. (EIP-1559).

1. Each agent i ∈ [n] submits a transaction of value vi > 0 and makes a
deposit of B + τi funds where τi ≥ 0 is an optional tip.

2. A miner finds a block, and selects a T ⊆ [n] with |T | = m that maximizes∑
i∈T τi. If there are multiple such T ’s, it selects T uniformly at random

from all suitable sets.

3. Each agent i ∈ T has their transactions included in the block and pays
their deposit, in total gaining vi − B − τi money; each agent j 6∈ T is
returned their deposit of B + τj currency and gains 0.

4. The miner receives
∑

i∈T τi currency.

5. The network adjusts the base fee B depending on m and n.

In keeping with auction terminology, moving forward we will refer to the
miner as the auctioneer. As per the introduction, we will let n = (1+ α)m for
some congestion constant α > 0. Let ε > 0 be the smallest unit of currency, and
assume it is sufficiently small, i.e. ε� vi, to mostly be ignored in calculations.
In practice, on Ethereum, as of 2022, we have ε ≈ €10−12.

2In practice, the block size of EIP-1559 is variable and we shall let m denote its maximum
possible value. In practice, the base fee would be adjusted to ensure that E[n] = m/2,
however the case of n ≤ m is not interesting (as all transactions will simply be included) so
we take m to be the maximum value and assume n > m.
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Modeling the Attack. We now propose a Stackelberg attack on Mecha-
nism 7.10: essentially, the leading contract agent commits to paying 2ε,
conditioned on everyone else committing to bidding ε. In this case, the
leading contract agent has their transaction included at almost zero cost, while
everyone else enters into a lottery. If anyone does not comply, the leading
contract agent instead submits the bid they would have submitted without the
contracts, or one slightly higher. This forces each other agent to decide between
a lottery and a first-price auction. We will show that when the valuations of the
transactions are somewhat concentrated, the agents prefer the lottery over the
first-price auction, as they would otherwise have to pay a bid commensurate
with their valuation, while in the auction they may receive the item for free.

As a warm-up and ongoing example, we look at the case where there are
three agents and two slots up for auction, that is n = 3 and m = 2. This models
a case where there are three buyers who wish to purchase two identical items —
we may imagine these big buyers to be exchanges that control large quantities
of user transactions, such as Coinbase or Binance, which are juggernauts in the
industry [5]. Note that in this example we have α = 1

2 . Suppose that agents
1, 2, 3 have valuations 0 < v1 < v2 < v3, respectively. In a first price auction,
where the valuations of the respective agents are known, the m agents with the
highest valuations only need to outbid the agent with m+ 1 highest valuation,
who is unwilling to bid beyond their valuation and receive negative utility. In
our example, agents 2 and 3 will bid slightly higher than the valuation of agent
1, yielding the following utilities: u1 = 0, u2 = v2 − v1 − ε, u3 = v3 − v1 − ε.

We now equip these three agents with contracts. If the agent with the
leading contract can make a credible and enforceable threat with the contract,
they may force other agents to accept the lottery at the price ε, thereby
guaranteeing the leading agent space an item at price of 2ε. The viability of
such a threat depends on the agents’ valuations. Agents will only comply if
their expected utility is higher when they cooperate compared to when the
threat is executed.

Consider first the case when agent 3 is the leading contract agent. The
contract will commit agent 3 to bidding either 2ε, if the two other agents
commit to playing ε, or to bidding the usual first price bid of v1 + ε otherwise.
If the contract works, agent 3 enjoys utility v3−2ε, a better result than the first
price auction utility of v3−v1−ε. The desirable outcome is also clear for agent
1: the lottery case yields utility 1

2(v1 − ε), which is better than the first price
auction utility of 0. Therefore, both 1 and 3 will submit to the contract. Agent
2 will cooperate if the first price utility is lower than the lottery utility, that is
if v2 − v1 − ε < 1

2(v2 − ε), which reduces to v1 + 1
2ε >

1
2v2. The attack would

not work if the valuations were less concentrated. If agent 2 is the lead contract
holder, the attack works if v1 + 1

2ε >
1
2v3, a more stringent concentration

requirement. If agent 1 has the leading contract, they may threaten to bid
v2 + ε, knowing they will likely not have to pay it. In this scenario, agent 1
has a credible threat if v2 + 1

2ε >
1
2v3, similar to the conditions for agent 3.
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The attack generalizes readily to a larger number of agents, although
the requirement on the valuations becomes stronger with more agents. In
particular, the attack no longer works if even a single agent has a valuation
that is significantly higher than the median. However, the leading contract
agent may persuade such agents to participate by promising them a free item
from the auction, taking some of the spots intended for the lottery. We denote
by C ⊆ [n] the coalition of agents (with |C| = k for some k < m) who are
given free items. This significantly loosens the valuation requirement and
allows us to show that the attack works even if k < m of the agents have
large valuations. The set C may also be used to capture those agents who are
oblivious to the attack, thus modeling the realistic scenario where some of the
agents are not aware of the attack and cannot respond accordingly. We have
not explicitly accounted for this; doing so would give a slightly stronger bound
in the following, but would not fundamentally change the analysis. We now
describe the attack in more detail.

Theorem 7.11. Consider m identical items, and let ε� v1 < v2 < · · · < vn be
the valuations of the n buyers, with n = (1+α)m for some α > 0. If for some
k < m it holds that,

vn−k+1 −B
vn−m

<
n− k
n−m

, (7.2)

then EIP-1559 is not Stackelberg resilient.

Proof. Assume that each agent has exactly one transaction, and let agent i be
the agent associated with the transaction of valuation vi. Suppose the contract
agents are ordered i1, i2, . . . , in, where i1 is the leading contract agent. Now
consider the following contract AC

u , parameterized by an integer u ∈ [n] that
represents the index of the contract order and a set C ⊆ [n] with i1 ∈ C and
|C| = k for some k ≤ m.

Contract 7.12. (AC
u ).

1. If u = n, play ε.

2. If u < n, play vn−m + ε if viu > vn−m + ε and 0 otherwise in every
subgame where any agent iv with v > u does not play the contract AC

v ;
otherwise play 2ε if u ∈ C, and ε if u 6∈ C.

Now suppose the leading contract agent deploys the contract AC
1 with

|C| = k < m and i1 ∈ C. If they are successful, their transaction will be added
with certainty for a cost of 2ε, thus gaining vi1 − 2ε. Consider the strategy of
agent j when every other agent submits, that is, plays Contract 7.12. If j ∈ C,
then clearly for small ε, agent j will comply with the threat. If instead j 6∈ C,
they will play Contract 7.12 to obtain a value of vj − ε with probability m−k

n−k .
If they do not play Contract 7.12, all agents revert to a first-price auction, in
accordance with their contracts. Then agent j can either bid too little to win
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or bid at least vn−m + ε to have their transaction included. If j ≤ n−m, this
exceeds their valuation, and will thus prefer Contract 7.12, as its expected
payoff is (m−k)(vi−B−ε)

n−k > 0. If instead j > n − m, they can choose not to
comply with the threat to gain vj − vn−m−B − 2ε utility. It follows that such
an agent will comply with the threat if vj − vn−m − B − ε > (m−k)(vj−B−ε)

n−k ,
which, when ignoring εs, solves to vj−B

vn−m
< n−k

n−m . But this is guaranteed to hold
by Eq. (7.2), since vj ≤ vn−k+1 for any j. Thus, complying with the threat is
an equilibrium, implying EIP-1559 is not Stackelberg resilient.

Note that by letting B = 0 we obtain a regular first-price auction, and
hence Theorem 7.11 implies that the transaction fee mechanisms of Ethereum,
Bitcoin, and most other blockchains are not Stackelberg resilient, regardless of
whether there is a base fee or not. We observe that the attack works also for
second-price auctions.

Theorem 7.13. Consider a second-price auction with m identical items, and n
buyers, in keeping with Theorem 7.11. If Eq. (7.2) holds, then the auction is
not Stackelberg resilient.

Proof (sketch). Consider the same attack, Contract 7.12. As we have seen, in
the first price setting, bidders who have perfect information must only bid just
enough to outbid the (n−m)th highest agent, with a bid of vn−m + ε. In the
first price auction, these agents will be charged the amount they bid. In the
second price auction, they can either bid their valuation or stick with vn−m+ ε.
In any case, if they are included, the agent will pay vn−m, a slight discount
on the vn−m + ε cost in the first price setting. Thus Contract 7.12 can be
used, and the scenario in which the attack works will look the same. If the
attack does not work, agents revert to the equilibrium as it would be without
contracts. This equilibrium would have the slightly different, second price cost.
Note that, in the proof of Theorem 7.11, we drop the epsilons that constitute
the difference between the first and second price auctions. So by the proof of
Theorem 7.11, second price auctions are also not Stackelberg resilient.

Risk Aversion. It is natural to wonder if the attack will still work if the
agents are risk averse. To model risk aversion, agents have some concave utility
function u = U(·). If, for example, an agent gets a slot for free at valuation vi,
their utility would be defined to be u = U(vi). For U(·) to be concave, we must
have U((1 − p)x + py) ≥ (1 − p)U(x) + pU(y) where (x,U(x)) and (y, U(y))
are two points on the utility function and p ∈ [0, 1]. Graphically, this implies
that any point on the line between (x,U(x)) and (y, U(y)) is on or below the
utility curve. This straight line below the curve traces out the utility of a coin
toss with probability p between U(x) and U(y). This models risk aversion
because the utility of any outcome based on a coin toss between two outcomes
will be on or below the curve, which in turn represents the utility of outcomes
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that are certain. If we make the assumption that x = U(x) = 0 and set y = vi,
we have U(pvi) ≥ pU(vi). Note that, in the proof of Eq. (7.2), we required
the condition, here simplified, that vi − vn−m−k+1 > pvi. If we instead had
some concave utility function, this would be U(vi − vn−m) > pU(vi). Given
that U(pvi) ≥ pU(vi), the condition found in Eq. (7.2) is necessary, but not
necessarily sufficient, for the contact attack to still be viable. Finding the
exact condition requires U(·) to be known.

Everyone Benefits Except for the Auctioneer

In the following, we will assume that k = 1 and that ε = 0. As k increases,
more agents with high valuations get free entry when ε = 0. Thus, their
relatively high valuations are counted into social welfare. As long as this elite
group is relatively small, this will have little impact on the chances of the
lottery agents, meaning allowing a relatively small k > 1 would only increase
social welfare.

We define the price of defiance, a ratio of sets of equilibrium that is related
to the price of anarchy [157]. Let S be the set of all strategy profiles in the
game and take two sets C ⊆ S, some set of strategies, and E ⊆ S, the set of
all equilibria of the game. We take the set C to be the set of equilibria after a
successful contract attack has been deployed. Define,

PoD =
maxs∈C Welf(s)
mins∈E Welf(s)

. (7.3)

This is the ratio between the best of a subset of possible outcomes and the
worst equilibrium. It differs from the price of anarchy in that we compare some
subset of strategies, here those that become equilibria due to the introduction
of a contract attack, rather the optimal solution, to the game’s usual equilibria.
We have PoD ≤ PoA.

Our set C is the set of equilibrium arising from agents having and complying
with Contract 4.1. There are up to n equilibria in the set, one for each choice
of agent with leading contract. To analyze the price of defiance we will need
concentration bounds on the valuations of the agents. Order the agents with
valuations v1 < v2 < . . . < vn, then vi ∼ Beta(i, n+1− i). Say a function f is
negligible if f(x) = o(xc) for every constant c ∈ R, i.e. if it grows slower than
the inverse of any polynomial. We will make use of the following concentration
bound on order statistics from the uniform distribution.

Lemma 7.14 (Skorski, [231]). Let X ∼ Beta(α, β) for α, β > 0, and define,

v2 =
αβ

(α+ β)2(α+ β + 2)
, c0 =

|β − α|
(α+ β)(α+ β + 2)

.

Then for any ε > 0, it holds that,

Pr [|X − E[X]| > ε] ≤ 2 exp
(
− ε2

2v2 + 2εmax {v, c0}

)
.
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Lemma 7.15. Let X1, X2, . . . , Xn ∼ U [0, 1], and let X(1) < X(2) < · · · < X(n)

be the n order statistics. Then,∣∣∣∣X(i) −
i

n+ 1

∣∣∣∣ = Õ(1/n), for every i = 1 . . . n,

except with negligible probability in n.

Proof. We make use of Lemma 7.14 to bound the error term and must therefore
first find the relevant values of v and c0. It is a fact that such order statistics
have the distribution Beta(i, n+ 1− i), in particular α = i and β = n+ 1− i.
Thus, for all values of i, we must have α + β = n + 1. It is easy to see that
we find the largest value v2 from Lemma 7.14 when α = β = n+1

2 . This case
yields

v2 ≤
n+1
2

n+1
2(

n+1
2 + n+1

2

)2 (n+1
2 + n+1

2 + 2
) =

1

4(n+ 3)
.

The value of c0 is largest when the numerator is largest, which is clearly when
|β − α| = n− 1. Note that this is a specifically different case from when v2 is
largest. When we go on to find the error bounds on specific vi’s, we will refine
the bound at this step. Thus, we have the following bounding value,

c0 ≤
n− 1

(n+ 1)(n+ 3)
.

It is easy to see that c = max{v, c0} = c0. Thus, we can write down the bound
for any i,

Pr
[∣∣X(i) − E[X(i)]

∣∣ > δ
]
< 2 exp

(
− δ2

2v2 + 2cδ

)

≤ 2 exp

− δ2

2 1
4(n+3) +

2δ(n−1)
(n+1)(n+3)


= 2 exp

(
− δ2 2(n+ 3)(n+ 1)

(n+ 1) + 4δ(n− 1)

)
< 2 exp

(
− δ2 2n2

(n+ 1) + 4δn

)
≈ 2 exp

(
− δ2 2n

1 + 4δ

)
= 2 exp(−Ω(δn)).

If we take δ = log2 n
n+1 = Õ(1/n), we obtain the bound,

Pr
[∣∣X(i) − E[X(i)]

∣∣ > δ
]
< 2 exp(−ω(logn)), (7.4)

which is negligible in n. We conclude with a union bound on all n valuations.
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Theorem 7.16. For uniformly distributed valuations, the price of defiance is at
least 1 + α− o(1), except with probability negligible in n.

Proof. It is easy to see that the maximal choice s ∈ C occurs when the agent
with the highest valuation has the contract. There is only one choice for
equilibrium s ∈ C. Thus we have,

PoD =
maxs∈C Welf(s)
mins∈E Welf(s)

=

(∑n−1
j=1

m−1
n−1 (vj − ε)

)
+ vn − 2ε(∑n

i=n−m+1 vi − vn−m − ε
)

≈
m−1
n−1

(∑n−1
j=1 vj

)
+ vn(∑n

i=n−m+1 vi
)
−mvn−m

. (7.5)

If the contract attack works, that is if the valuations are in keeping with
the condition from Theorem 7.11, we have PoD > 1. This can be seen
mathematically by substituting the condition into the denominator of Eq. (7.5)
above. Intuitively, given that the threat is just the usual first price auction, the
other agents will acquiesce only if their utility would be higher in the lottery.
Thus, total lottery welfare, the numerator, must be higher than the auction,
the denominator, leading to a PoD > 1 in the general case. Each vi is the ith
order statistic of a uniformly distributed random variable, that is vi = X(i)

where Xi is sampled i.i.d. from the uniform distribution on [0, 1]. By linearity
of expectation, we have that,

E

[
n∑

i=n−m+1

vi

]
=

n∑
i=n−m+1

i

n+ 1
=

1

n+ 1

(
n∑

i=0

i−
n−m∑
k=0

k

)

=
n

2
− (n−m)(n−m+ 1)

2(n+ 1)
,

and that,

E

n−1∑
j=1

vj

 =
n−1∑
j=1

j

n+ 1
=

(n− 1)n

2(n+ 1)
.

We proceed to lower bound PoD using Lemma 7.15 to yield,

PoD ≥
m−1
n−1

(
(n−1)n
2(n+1) − (n− 1)δ

)
+ n

n+1 − δ
n
2 −

(n−m)(n−m+1)
2(n+1) +mδ −m

(
n−m
n+1 + δ

)
=

n(m+ 1)− 2m(n+ 1)δ

m(m+ 1) + 4m(n+ 1)δ

We now condition on the errors of the valuations being bounded by δ =
(m+1) log2 n
2m(n+1) , which we know to happen except with negligible probability by
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Lemma 7.15. Then we obtain the following bound,

PoD ≥ n− log2(n)
m+ log2(n)

= 1 + α− o(1),

as desired.

Arguably, this suggests that lotteries should be used as transaction mech-
anisms when the valuations are believed to be of similar size. In the n = 3,
m = 2 case, we have

PoD =
v1
2 + v2

2 + v3 − 3ε

v2 + v3 − 2v1

If the condition for the contract to work from the example in Section 7.4 holds,
that is, if v1 + 1

2ε >
1
2v2, the ratio becomes

PoD >
v1
2 + v2

2 + v3 − 3ε

v3 + ε
,

which is clearly larger than one.
It is important to note that while the attack benefits all the agents with

transactions, it is detrimental to the auctioneer, who loses essentially all of
their revenue. Auctioneers that find themselves subject to such an attack
might respond by not allowing the smart contracts to be deployed, but this
could be remedied if agents use a different blockchain to deploy the attack.
Auctioneers may also find themselves obligated to include the contract moves
due to a staking scheme [47]. Continuing with our n = 3, m = 2 example,
we readily see the auctioneer will earn 2(v1 + ε) in the auction case. If the
contract attack is successfully executed, the auctioneer income will be 3ε, 2ε
from the leading contract holder, regardless of which agent this is, and ε from
the winner of the lottery. Thus, almost all the revenue is lost; the auctioneer
will miss out on 2v1 − ε income. If there were a base fee and all agents had a
valuation larger than said base fee, i.e. v1 > B, the first price revenue would
be 2(v1 + ε−B). The lottery revenue will continue to be 3ε and the income
lost to the attack will be 2 (v1 −B)− ε.

The Attack Works for Natural Distributions

In this section, we show that the conditions required for the attack are satisfied
with high probability under reasonable assumptions. We will assume that
B = 0. The results obtained are qualitatively similar when the valuations are
much larger than the base fee.

We continue with our illustration of the n = 3, m = 2 case, now assuming
that the agents have valuations that are uniformly distributed on [0, 1]. As
before, we have three valuations v1 < v2 < v3 and we can now make use
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of the distribution. The ordered valuations in are order statistics, that is
vi = X(i) where all Xi are sampled i.i.d. from the uniform distribution on [0, 1].
Using the well known fact that order statistics on the uniform distribution
follow specific beta distributions, we get the following distributions and their
expectations: v1 ∼ Beta(1, 3) yielding, E[v1] = 1

4 ; v2 ∼ Beta(2, 2), yielding
E[v2] = 1

2 ; and v3 ∼ Beta(3, 1), with E[v3] = 3
4 . Note that the variance for all

the distributions is Var[vi] ≤ 1/20 and we will not take it into account moving
forward. In the first price auction, we can see that if agents 2 and 3 bid just
enough to outbid agent 1, i.e. 1

4 + ε, they will secure their slots as cheaply as
possible. So in the first price auction the agents will have the expected utilities
E[u1] = 0, E[u2] = 1

4 − ε, and E[u3] = 1
2 − ε.

If agent 1 has the leading contract, they can threaten to outbid agent 2
with a bid of 1

2 + ε. If the threat were to be carried out, agent 2 would lose
their slot and receive utility 0 and agent 3, secure in the top spot, but given
they outbid agent 2, will receive 1

4 − ε. If agents 2 and 3 comply with the
threat, i.e. bid ε and enter a lottery, they will have expected utilities 1

4 −
ε
2

and 3
8 −

ε
2 , respectively. These utilities are more desirable than ignoring the

threat, and the attack can be executed. Agent 1 will enjoy an expected utility
of 1

4 − 2ε. Note that agents 1 and 2 have higher utility than they would have
had in the first price auction, but agent 3 is hurt by the attack.

If agent 2 has the leading contract, their best threat is outbidding agent 1
with a bid of 1

4 +ε. This is no threat at all as it simply coincides with their first
price strategy. If instead agent 3 has the leading contract, we once again have a
viable attack. Since agent 3 already outbids the others, their contract-endowed
strategy is more a proposition for mutual benefit than a greedy attack. If the
other two agents enter into a lottery at price ε and agent 3 bids 2ε, we have
expected utilities E[u1] = 1

8 −
ε
2 ,E[u2] = 1

4 −
ε
2 , and E[u3] = 3

4 − 2ε. It can be
easily seen that everyone benefits in this situation and the attack will work. It
is an easy calculation to find that PoD ≈ 3/2. Regardless of which agent has
the leading contract, if the attack works, the total tip paid to the auctioneer
will be 3ε. In the first price auction, the expected auctioneer payout is 1

2 + 2ε.
The difference constitutes an almost complete loss of revenue.

Lemma 7.17 (Xu, Mei, Miao, [259]). Let X1, X2, . . . , Xn ∼ U(0, 1) be i.i.d. Let
i < j and define Rij =

X(j)

X(i)
and let f(·) be its density function with support

[1,∞). Then for every r ≥ 1,

f(r) =
n!(r − 1)j−i−1

(i− 1)!(j − i− 1)!(n− j)!rj

∫ 1

0
(1− u)j−1 un−j du.

Theorem 7.18. Suppose n buyers participate in an auction of m identical items
where n = (1 + α)m > m + 1. If the valuations of the items are sampled
uniformly at random and 0 ≤ α < 0.53, then first-price auctions are not
Stackelberg resilient, except with probability negligible in m.
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Proof. We will show that Eq. (7.2) holds except with probability negl(n).
Suppose w.log. that the valuations are sampled uniformly from [0, 1] and let
v1 < v2 < · · · < vn be their valuations. The value vi equals the ith order
statistic, the distribution of which is well-known for uniform values. We are
interested in the ratio R = vn−k+1/vn−m, so let f(·) be its density function.
Let k = mδ for some 0 < δ < 1. By Lemma 7.17, noting that we have
j = (1 + α− δ)m+ 1, i = αm, we get that,

f(r) =
n! (r − 1)m−1

(αm− 1)! z((1− δ)m)! rn

∫ 1

0
(1− u)(1+α−δ)m−1uδm−1 du

=
((1 + α− δ)m)!

((1− δ)m)! (αm− 2)!

(r − 1)(1−δ)m

rn
.

We denote by H(p) = −p lg p− (1− p) lg(1− p), the binary entropy function,
defined on [0, 1]. Note that H(p) ≤ 1 for every p ∈ [0, 1]. A useful upper bound
is given by the following.

H(x) ≤ 2
√
x (1− x). (7.6)

The binary entropy function is useful because it allows us to upper bound the
binomial coefficient as follows.(

n

k

)
≤ 2nH(k/n) (7.7)

We bound the probability that Eq. (7.2) does not hold as follows.

Pr
[
R′ ≥ n− k

n−m

]
=

∫ ∞

1+α−δ
α

fR(r)dr

=
((1 + α− δ)m)!

((1− δ)m)! (αm− 2)!

∫ ∞

1+α−δ
α

(r − 1)(1−δ)m

rn
dr

≤ α

α+ δ

(
(1 + α− δ)m

αm

)(
1 + α− δ

α

)1−(α+δ)m

We now apply Eq. (7.7) and collect the terms in the exponent.

≤ α

α+ δ
exp

(
H

(
α

1 + α− δ

)
(1 + α− δ)m

+ log
(
1 + α− δ

α

)
(1− (α+ δ)m)

)
We use the fact that H(p) ≤ 2

√
p(1− p) as per Eq. (7.6) to obtain,

≤ α

α+ δ
exp

(
log
(
1 + αδ

α

)

+m

[
2
√
α(1− δ)− (α+ δ) log

(
1 + αδ

α

)])
.
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We note that the exponent is negative for sufficiently large m, and hence the
probability is negligible if,

1 + α− δ − (α+ δ) log
(
1 + αδ

α

)
< 0.

Which solves to 0 < α < 0.529914 for δ = 0.69.

Lemma 7.19 (Adler, [2]). Let X1, X2, . . . Xn be i.i.d. Pareto distributed with
parameter p > 0. Let i < j and define Rij =

X(j)

X(i)
and let f(·) be its density

function with support [1,∞). Then for every r ≥ 1,

f(r) =
p (n− i)!

(j − i− 1)!(n− j)!

(
1− 1

rp

)j−i−1 1

rp(n−j+1)+1
.

Theorem 7.20. Suppose n buyers participate in an auction of m identical
items where n = (1 + α)m for some α > 0. If the valuations of the items
are sampled according to a Pareto distribution with parameter p > 1 and
0 ≤ α ≤ α(p) < 0.69, then first-price auctions are not Stackelberg resilient,
except with probability negligible in m.

Proof. Suppose for the sake of the argument that n is even, and let C be
the mδ agents with the largest valuations for some constant 0 < δ < 1. Let
R = (vn−k+1/vn−m) and let f(·) be its density function. By Lemma 7.19, it is
given by,

f(r) =
pm!

(m− k − 2)!(k − 1)!

(
1− 1

rp

)m−k−2 1

rpk+1

= pk(m− k − 1)(m− k)
(
m

k

)(
1− 1

rp

)m−k−2 1

rpk+1
.

We bound the probability that Eq. (7.2) does not hold as follows.

Pr
[
R ≥ n− k

n−m

]
= pk(m− k − 1)(m− k)

(
m

k

)∫ ∞

1+α−δ
α

(
1− 1

rp

)m−k−2

rpk+1
dr

≤ pk(m− k − 1)(m− k)
(
m

k

)∫ ∞

1+α−δ
α

1

rpk+1
dr

= m((1− δ)m− 1)(1− δ)
(
m

δm

)(
1 + α− δ

α

)−pδm

We now bound the binomial coefficient using Eq. (7.7) and collect the terms
in the exponent.

≤ m((1− δ)m− 1)(1− δ) exp
(
m

[
H(δ)− δp log

(
1 + α− δ

α

)])
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We note that the exponent is negative, and hence the function negligible, if
the following inequality is satisfied.

δp log
(
1 + α− δ

α

)
> H(δ).

By Eq. (7.6), it suffices then to establish the following bound.

δp log
(
1 + α− δ

α

)
> 2
√
δ(1− δ).

We now let δ = 5
p2+4

, and note that this inequality is satisfied for any p > 1
whenever the following inequality holds.

0 < α <
p2 − 1

(4 + p2)

exp

2

√
p2−1

p2√
5

− 1


Denote the rhs by α(p). Note that α(p) > 0 for any p > 1 and evaluates to
1
2(coth(1/

√
5)− 1) ≈ 0.69 in the limit as p→∞.

The Pareto distribution, which follows the 80/20 rule, is the more natural
distribution in this context. It is widely used in economics and it makes
intuitive sense that transactions, and therefore valuations, would tend to be
small, with a tail of rarer, but large transactions. The uniform distribution
can be seen as a lower bound, because the real distribution would have fewer
high valuation transactions, and this can only favor the attack.
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